Dynamic robust optimization for fractionated IMRT treatment planning

Velibor V. Mišić † Timothy C.Y. Chan †

[†] Department of Mechanical and Industrial Engineering, University of Toronto

June 20, 2011

INFORMS Healthcare 2011, Montréal

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto

- Leading cause of cancer death in the US and Canada
- ▶ 180,000 deaths in last year; 25% of cancer deaths

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto

Intensity modulated radiation therapy (IMRT)

- Very popular form of radiation therapy
- Several beams; each beam consists of smaller beams or beamlets
- Basic problem: find beamlet intensities that deliver at least some prescription dose to the tumour at minimal healthy tissue damage

- For lung cancer, most significant uncertainty comes from breathing motion
- Patient breathes; tumour is not in the same position during treatment session
- Breathing pattern is not known precisely

Approaches to uncertainty

- Nominal approach: assume patient will breathe according to a single breathing pattern
 - If actual breathing pattern is different from planned, tumour underdose is very likely
- Margin approach: assume patient can breathe according to any breathing pattern
 - Tumour dose is guaranteed to be sufficient, but cost to healthy tissue is high
- Robust optimization: Given a set of breathing patterns, find the treatment that minimizes damage to healthy tissue and meets tumour dose constraints under those breathing patterns

- X: a set of breathing motion states
- ▶ $\mathbf{p} = (p(x))_{x \in X}$: a breathing motion probability distribution
- p(x): proportion of time patient spends in state x during a treatment session
- P: uncertainty set; collection of p vectors that we wish to protect ourselves against

Robust optimization - decision variables and parameters

- B: set of beamlets to be used for treatment
- w_b : intensity of beamlet $b \in \mathcal{B}$
- \mathcal{V} : set of all voxels; \mathcal{T} : set of tumour voxels
- For each voxel ν, motion state x and beamlet b, a dose deposition coefficient Δ_{v,x,b}
- Dose to voxel v under PMF p:

$$\sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b$$

• θ_{v} : minimum prescription dose of tumour voxel $v \in \mathcal{T}$

Robust optimization - model

Formulation is

$$\begin{array}{ll} \text{minimize} & \sum_{v \in \mathcal{V}} \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} \bar{p}(x) w_b \\ \text{subject to} & \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b \geq \theta_v, \quad \forall \ v \in \mathcal{T}, \ \forall \ \mathbf{p} \in P, \\ & \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b \leq \gamma \theta_v, \quad \forall \ v \in \mathcal{T}, \ \forall \ \mathbf{p} \in P, \\ & w_b \geq 0, \quad \forall \ b \in \mathcal{B}, \end{array}$$

where $\bar{\mathbf{p}}$ is a PMF representative of the patient's overall breathing and $\gamma \geq 1.$

Robust optimization - properties

If patient's PMF p is in P while w* (optimal solution for RO problem with P) is being delivered, then

$$d_{v} = \sum_{x \in \mathcal{X}} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_{b}^{*} \geq \theta_{v}$$

for every tumour voxel v

Generally, the larger P is, the more dose is delivered to healthy tissue under w^{*}. (If P¹ ⊇ P², then

Obj. value with
$$P^1 \ge \text{Obj.}$$
 value with P^2

holds)

Fractionation:

- Prescribed dose is divided up into smaller amounts (fractions)
- Each fraction is delivered once a day every day for a period of 4 - 6 weeks
- Healthy tissue heals faster than cancerous tissue

Fractionation (continued)

- Usually, planner solves one problem before start of treatment, gets w, delivers w/n in every fraction (static) ...
- but what if patient's p changes over treatment?
 - Patient may be nervous in the beginning, but become more relaxed by the end
 - Progression of disease may change patient's breathing
- what if uncertainty set P was determined inappropriately?
 - P may be very large, but patient's p's are actually tightly clustered around a single value

Our idea: Solve a sequence of robust optimization problems (one for each fraction), with the uncertainty set updated using the most recent PMF each time, and deliver the resulting solutions

Initialization:

1. Select an initial uncertainty set P^1

2. Solve the robust problem associated with P^1 to obtain beamlet weight vector \mathbf{w}^1 for the first fraction Initialization:

- 1. Select an initial uncertainty set P^1
- 2. Solve the robust problem associated with P^1 to obtain beamlet weight vector \mathbf{w}^1 for the first fraction

- 1. Deliver \mathbf{w}^i/n to the patient
- 2. Measure the patient's breathing, obtain \mathbf{p}^i
- 3. Generate new uncertainty set P^{i+1} from previous set P^i and just observed \mathbf{p}^i
- 4. Solve the robust problem with P^{i+1} to obtain beamlet weight vector \mathbf{w}^{i+1} for the next fraction
- 5. Set i = i + 1

- 1. Deliver \mathbf{w}^i/n to the patient
- 2. Measure the patient's breathing, obtain \mathbf{p}^i
- 3. Generate new uncertainty set P^{i+1} from previous set P^i and just observed \mathbf{p}^i
- 4. Solve the robust problem with P^{i+1} to obtain beamlet weight vector \mathbf{w}^{i+1} for the next fraction
- 5. Set i = i + 1

- 1. Deliver \mathbf{w}^i/n to the patient
- 2. Measure the patient's breathing, obtain \mathbf{p}^i
- 3. Generate new uncertainty set P^{i+1} from previous set P^i and just observed \mathbf{p}^i
- 4. Solve the robust problem with P^{i+1} to obtain beamlet weight vector \mathbf{w}^{i+1} for the next fraction

5. Set i = i + 1

- 1. Deliver \mathbf{w}^i/n to the patient
- 2. Measure the patient's breathing, obtain \mathbf{p}^i
- 3. Generate new uncertainty set P^{i+1} from previous set P^i and just observed \mathbf{p}^i
- 4. Solve the robust problem with P^{i+1} to obtain beamlet weight vector \mathbf{w}^{i+1} for the next fraction

5. Set i = i + 1

- 1. Deliver \mathbf{w}^i/n to the patient
- 2. Measure the patient's breathing, obtain \mathbf{p}^i
- 3. Generate new uncertainty set P^{i+1} from previous set P^i and just observed \mathbf{p}^i
- 4. Solve the robust problem with P^{i+1} to obtain beamlet weight vector \mathbf{w}^{i+1} for the next fraction
- 5. Set i = i + 1

• The set of all probability distributions on X:

$$\mathcal{P} = \left\{ \mathbf{p} \in \mathbb{R}^{|\mathcal{X}|} \ \middle| \ \forall \ x \in \mathcal{X}, \ p(x) \ge 0; \ \sum_{x \in \mathcal{X}} p(x) = 1
ight\}$$

An uncertainty set P is specified by a lower bound vector *l* and upper bound vector **u**:

$$P = \left\{ \mathbf{p} \in \mathcal{P} \mid \forall \ x \in X, \ \ell(x) \le p(x) \le u(x) \right\}.$$

Updating the uncertainty set

Exponential smoothing:

$$\boldsymbol{\ell}^{k+1} = (1-\alpha)\boldsymbol{\ell}^k + \alpha \mathbf{p}^k$$
$$\mathbf{u}^{k+1} = (1-\alpha)\mathbf{u}^k + \alpha \mathbf{p}^k$$

where $\alpha \in [0, 1]$.

Running average:

$$\ell^{k+1} = \frac{1}{k+1} (\ell^1 + \sum_{i=1}^k \mathbf{p}^i)$$
$$\mathbf{u}^{k+1} = \frac{1}{k+1} (\mathbf{u}^1 + \sum_{i=1}^k \mathbf{p}^i)$$

- To analyze our results later, we also consider "prescient" algorithms
- Daily prescient algorithm:
 - On day *i*, set $\ell^i = \mathbf{u}^i = \mathbf{p}^i$, so $P^i = {\mathbf{p}^i}$
 - ▶ On each day, tumour voxel v receives at least θ_v/n , so by end it receives at least θ_v
- Average prescient algorithm:
 - Calculate the average PMF: $\mathbf{p}_{avg} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}^{i}$.
 - On day *i*, set $\ell^i = \mathbf{u}^i = \mathbf{p}_{avg}$, so $P^i = {\mathbf{p}_{avg}}$
 - ▶ By end of treatment, each tumour voxel v receives at least θ_v

- Sequence of real patient PMFs: $\mathbf{p}^1, \mathbf{p}^2, \dots, \mathbf{p}^n$
- Select initial uncertainty set
 - Nominal; P = { p
 - Margin; P = P
 - Robust; in between $\{\tilde{\mathbf{p}}\}\$ and \mathcal{P} .

4 3 b

Computational results - first PMF sequence

Minimum tumor dose versus mean left lung dose

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto

Computational results - first PMF sequence (zoomed in)

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto

Computational results - takeaways

- Dynamic solutions are in general better than static solutions
- Choice of initial uncertainty set is less important than it is for static robust method
- Solutions are very close in quality to the prescient solution

Suppose

$$\mathbf{p}^n
ightarrow \mathbf{p}^*$$

as $n \to \infty$. What can we say about

$$\frac{1}{n}\sum_{i=1}^{n}\Delta\mathbf{p}^{i}\mathbf{w}^{i}$$

as
$$n o \infty$$
? $(\Delta \mathsf{pw} = [\sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} \mathsf{p}(x) w_b]_{v \in \mathcal{V}})$

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Convex-convergent update algorithms

Call an uncertainty set update algorithm convex-convergent if:

 Each update is a convex combination of the most recent p and most recent ℓ/u: for every n ∈ Z₊, there exists α_n ∈ [0, 1] such that

$$\boldsymbol{\ell}^{n+1} = (1 - \alpha_n)\boldsymbol{\ell}^n + \alpha_n \mathbf{p}^n,$$
$$\mathbf{u}^{n+1} = (1 - \alpha_n)\mathbf{u}^n + \alpha_n \mathbf{p}^n.$$

The updates inherit the convergence of the PMF sequence:

$$\mathbf{p}^n
ightarrow \mathbf{p}^* \Rightarrow \boldsymbol{\ell}^n
ightarrow \mathbf{p}^*, \mathbf{u}^n
ightarrow \mathbf{p}^*.$$

Let

- w^{*}(p^{*}) be the set of optimal solutions to the robust problem with P = {p^{*}}, and
- w^{*}(ℓ, u) be the set of optimal solutions to the robust problem with P defined by ℓ and u.

Let

$\textbf{D} = \{\textbf{d} \mid \textbf{d} = \Delta \textbf{p}^* \textbf{w} \text{ for some } \textbf{w} \in \textbf{w}^*(\textbf{p}^*) \}.$

- D is the set of dose distributions that are obtained when a w from w^{*}(p^{*}) is delivered and p^{*} is realized during delivery
- ► Every d ∈ D meets the minimum tumour dose constraint (for every v ∈ T, d_v ≥ θ_v)

Convergence of dose distributions

Theorem

Suppose $\mathbf{p}^n \to \mathbf{p}^*$ and $(\ell^n)_{n=1}^{\infty}$ and $(\mathbf{u}^n)_{n=1}^{\infty}$ are obtained by a convex-convergent update algorithm. Suppose $\mathbf{w}^i \in \mathbf{w}^*(\ell^i, \mathbf{u}^i)$ for each *i*.

Then for every $\epsilon > 0$, there exists an $N \in \mathbb{Z}_+$ such that for all n > N,

$$rac{1}{n}\sum_{i=1}^n \Delta \mathbf{p}^i \mathbf{w}^i \in U(\mathbf{D},\epsilon),$$

where

$$U(A,\epsilon) = \bigcup_{x \in A} B(x,\epsilon),$$

and $B(x, \epsilon)$ is the ϵ -ball at x.

(4月) (4日) (4日)

Convergence of dose distributions (continued)

- For daily and average prescient, same theorem holds
- For static robust:

$$\frac{1}{n}\sum_{i=1}^{n}\Delta\mathbf{p}^{i}\mathbf{w}=\Delta\sum_{i=1}^{n}\frac{\mathbf{p}^{i}}{n}\mathbf{w}\rightarrow\Delta\mathbf{p}^{*}\mathbf{w}$$

as $n \to \infty$.

Δ**p*****w** may have some underdosed tumour voxels, depending on where **p*** is with respect to the uncertainty set *P* of **w**

- Dynamic robust method greatly improves on the static robust method
- Method achieves performance comparable to optimal prescient algorithms
- Simple and does not require a large amount of information pre-treatment (but does require work during treatment)

Future work

- Stress-testing under pathological PMF sequences
- Reducing the frequency of adaptation
- Adaptation in a distributionally-robust setting

4 3 b

- NSERC and CIHR for financial support
- Dr. Thomas Bortfeld at MGH for patient data

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto

< ∃ →

Thank you for listening!

Questions/comments?

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto

Extras

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto

æ

<ロ> <同> <同> < 同> < 同>

Computational results - second PMF sequence

Minimum tumor dose versus mean left lung dose

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto

Computational results - second PMF sequence (zoomed in)

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto

Reactive method

Define \mathbf{d}^1 as $d_v^1 = \theta_v$ for $v \in \mathcal{T}$, \mathbf{u}^1 as $u_v^1 = \gamma \theta_v$ for $v \in \mathcal{T}$. Start with i = 1.

1. Solve to obtain \mathbf{w}^i :

$$\begin{array}{ll} \text{minimize} & \sum_{v \in \mathcal{V}} \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} \bar{p}(x) w_b \\ \text{subject to} & \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b \geq d_v^i, \quad \forall v \in \mathcal{T}, \ \mathbf{p} \in P, \\ & \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b \leq u_v^i, \quad \forall v \in \mathcal{T}, \ \mathbf{p} \in P, \\ & w_b \geq 0, \quad \forall b \in \mathcal{B}. \end{array}$$

2. Deliver
$$w^i/(n-i+1)$$
.

3. Observe \mathbf{p}^i .

Reactive method (continued)

4. Set \mathbf{d}^{i+1} as

$$d_v^{i+1} = \max\{0, d_v^i - \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p^i(x) w_b^i / (n-i+1)\},$$

 \mathbf{u}_{v}^{i+1} as

$$u_v^{i+1} = \max\{0, u_v^i - \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p^i(x) w_b^i/(n-i+1)\}.$$

5. Generate
$$P^{i+1}$$
 from P^i and \mathbf{p}^i .

6. Set i = i + 1.

Mean and max. underdose by fraction - non-reactive

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto

Mean and max. underdose by fraction - reactive

Mišić and Chan: Dynamic robust IMRT optimization (Montréal, 2011)

Applied Optimization Lab, University of Toronto