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Lung cancer

> Leading cause of cancer death in the US and Canada
» Over 180,000 deaths this year; 25% of cancer deaths
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Intensity modulated radiation therapy (IMRT)

» Very popular form of radiation therapy

» Several beams; each beam consists of smaller beams or
beamlets

» Basic problem: find beamlet intensities that deliver at least
some prescription dose to the tumour at minimal healthy
tissue damage
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Uncertainty

» For lung cancer, most significant uncertainty comes from
breathing motion

> Patient breathes; tumour is not in the same position during
treatment session

» Breathing pattern is not known precisely
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Approaches to uncertainty

» Nominal approach: assume patient will breathe according to
a single breathing pattern

» If actual breathing pattern is different from planned, tumour
underdose is very likely
» Margin approach: assume patient can breathe according to
any breathing pattern
» Tumour dose is guaranteed to be sufficient, but cost to healthy
tissue is high
» Robust optimization: Given a set of breathing patterns, find
the treatment that minimizes damage to healthy tissue and
meets tumour dose constraints under those breathing patterns
(Bortfeld et al. 2008)
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Robust optimization - uncertainty

>

v

v

v

X: a set of breathing motion states

p = (p(x))xex: a breathing motion probability mass function
(PMF)

p(x): proportion of time patient spends in state x during a
treatment session

P: uncertainty set; collection of p vectors that we wish to
protect ourselves against
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Robust optimization - decision variables and parameters

v

v

v

v

B: set of beamlets to be used for treatment
wp: intensity of beamlet b € B
V: set of all voxels; T set of tumour voxels

For each voxel v, motion state x and beamlet b, a dose
deposition coefficient A, ,

Dose to voxel v under PMF p:

Z Z Av,x,bp(X)Wb

xeX beB

f,: minimum prescription dose of tumour voxel v € T
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Robust optimization - model

Formulation is

minimize Z Z ZA\,,X’bb(x)Wb

veV xeX beB

subject to Z ZA\,’X’bp(x)wb >0, VYveT,VpeP,
xeX beB
Z ZAv,x,bP(X)Wb <~0,, VveT,VpeP,
xeX beB

w, >0, Vbeb,

where p is a PMF representative of the patient’s overall breathing
and v > 1.
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Robust optimization - properties

» If patient’s PMF p is in P while w* (optimal solution for RO
problem with P) is being delivered, then

dv — Z Z Av,x,bp(X)Wz;|< > 9\,

xeX beB

for every tumour voxel v

» Generally, the larger P is, the more dose is delivered to
healthy tissue under w*. (If P O P?, then

Obj. value with P* > Obj. value with P?

holds)
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so what's the problem?

Fractionation:

» Prescribed dose is divided up into n smaller amounts
(fractions)

» Each fraction is delivered once a day every day for a period of
4 - 6 weeks

» Healthy tissue heals faster than cancerous tissue
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Fractionation (continued)

> In Bortfeld et al. (2008), planner solves one problem before
start of treatment, gets w, delivers w/n in every fraction
(static) ...
> ... but what if patient’'s p changes over treatment?
» Patient may be nervous in the beginning, but become more
relaxed by the end
> Progression of disease may change patient’s breathing
> ... what if uncertainty set P was determined inappropriately?

» P may be very large, but patient’'s p's are actually tightly
clustered around a single value
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Adaptive robust optimization

Our idea: Solve a sequence of robust optimization problems (one
for each fraction), with the uncertainty set updated using the most
recent PMF each time, and deliver the resulting solutions

Misi¢ and Chan: Adaptive robust IMRT optimization (Charlotte, 2011) Applied Optimization Lab, University of Toronto



Our approach - |

Initialization:

1. Select an initial uncertainty set P?
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Our approach - |

Initialization:
1. Select an initial uncertainty set P?

2. Solve the robust problem associated with P! to obtain
beamlet weight vector w' for the first fraction
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Our approach - |l

In iteration (fraction) / (€ {1,...,n}):
1. Deliver w'/n to the patient
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Our approach - |l

In iteration (fraction) / (€ {1,...,n}):
1. Deliver w'/n to the patient
2. Measure the patient’s breathing, obtain p’
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Our approach - |l

In iteration (fraction) / (€ {1,...,n}):
1. Deliver w'/n to the patient
2. Measure the patient’s breathing, obtain p’

3. Generate new uncertainty set P'*1 from previous set P’ and
just observed p'
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Our approach - |l

In iteration (fraction) / (€ {1,...,n}):
1. Deliver w'/n to the patient
2. Measure the patient’s breathing, obtain p’
3. Generate new uncertainty set Pi+1 from previous set P’ and
just observed p’

4. Solve the robust problem with P*1 to obtain beamlet weight
vector wt! for the next fraction
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Our approach - |l

In iteration (fraction) / (€ {1,...,n}):
1. Deliver w'/n to the patient
2. Measure the patient’s breathing, obtain p’

3. Generate new uncertainty set P'*1 from previous set P’ and
just observed p'

4. Solve the robust problem with P*1 to obtain beamlet weight
vector w' Tt for the next fraction

5 Seti=i+1
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Uncertainty sets

» The set of all probability distributions on X:

P:{peRm V x e X, p(x)>0; Zp(x)zl}
xeX

» An uncertainty set P is specified by a lower bound vector £
and upper bound vector u:

P={peP|¥xeX, ()< p(x) < u(x)}.
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Updating the uncertainty set

» Exponential smoothing:

where « € [0, 1].

» Running average:

k
1 .
k+1 1 i
e = +Zi_1p)
1 k
k+1 __ 1 }:1
! _k+1(u+i:1p)
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Computational results - |

» Sequence of real patient PMFs: pl,p2,...,p
> Select initial uncertainty set

» Nominal; P = {p}

» Margin; P =P

» Robust; in between {p} and P.
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Computational results - first PMF sequence

Minimum tumor dose versus mean left lung dose
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Computational results - first PMF sequence (zoomed in)

Minimum tumor dose versus mean left lung dose
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Computational results - takeaways

» Adaptive solutions are in general better than static solutions

» Choice of initial uncertainty set is less important than it is for
static robust method

» Solutions are very close in quality to the prescient solution
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Theoretical results

Suppose
pn N p*
as n — co. What can we say about
1 n
LS apw
"=
as n — oo?

(pr = [ZXEX ZbeB Av,x,bp(X)Wb]VGV)
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Convex-convergent update algorithms

Call an uncertainty set update algorithm convex-convergent if:

1. Each update is a convex combination of the most recent p
and most recent £/u: for every n € Z, there exists
ap € [0, 1] such that

en—l—l — (1 o an)en _}_anpn’

u™ = (1 - a,)u” + a,p”.
2. The updates inherit the convergence of the PMF sequence:

p" —p*=£"— p",u’ — p".
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Optimal solution sets

Let

» w*(p*) be the set of optimal solutions to the robust problem
with P = {p*}, and

» w*(€,u) be the set of optimal solutions to the robust problem
with P defined by £ and u.
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Optimal dose distribution set

> Let
D ={d|d = Ap*w for some w € w*(p*)}.

» D is the set of dose distributions that are obtained when a w
from w*(p*) is delivered and p* is realized during delivery

» Every d € D meets the minimum tumour dose constraint (for
every veT,d >0,
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Convergence of dose distributions

Theorem

Suppose p" — p* and (£")2; and (u")32; are obtained by a
convex-convergent update algorithm. Suppose w' € w*(£', u’) for
each i.

Then for every € > 0, there exists an N € Z. such that for all
n>N,

1 < o
; E ApIW’ € U(D,E),
i=1

where

)= B(x.e),

XxEA
and B(x,€) is the e-ball at x.
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Convergence of dose distributions (continued)

» For daily and average prescient, same theorem holds

» For static robust:
1” . np,
- Ap'w = A —w — Ap”*

as n — 0.

» Ap*w may have some underdosed tumour voxels, depending
on where p* is with respect to the uncertainty set P of w
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Summary

» Adaptive robust method greatly improves on the static robust
method

» Method achieves performance comparable to optimal prescient
algorithms

» Simple and does not require a large amount of information
pre-treatment (but does require work during treatment)
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Future work

» Reducing the frequency of adaptation
» Adaptation in a distributionally-robust setting
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Thank you for listening!

» Questions/comments?

Misi¢ and Chan: Adaptive robust IMRT optimization (Charlotte, 2011) Applied Optimization Lab, University of Toronto



Extras
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Prescient algorithms

» To analyze our results later, we also consider “prescient”
algorithms
» Daily prescient algorithm:
» Onday i, set £ =u' =p', so P' = {p'}
» On each day, tumour voxel v receives at least 6, /n, so by end
it receives at least 6,
» Average prescient algorithm:
) 1 i
» Calculate the average PMF: pave =% Sr.p
» Onday i, set £ = u' = payg, S0 P' = {pavg}
» By end of treatment, each tumour voxel v receives at least 6,
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Computational results - second PMF sequence

Minimum tumor dose versus mean left lung dose
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Computational results - second PMF sequence (zoomed in)

Minimum tumor dose versus mean left lung dose
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Reactive method

Define d! as d‘} =@, forveT,uas u& =~0, for v € T. Start
with 7/ = 1.

1. Solve to obtain w':

minimize Z Z Z Ay« pP(X)Wp

veV xeX beB

subject to Z ZAV%bp(x)Wb >dl, YveT,peP,
xeX beB
Z ZAv,x,bP(X)Wb <u, YveT,peP,
xEX beB

w, >0, VbeB.

2. Deliver w//(n—i+1).
3. Observe p'.

Applied Optimization Lab, University of Toronto
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Reactive method (continued)

4. Set d't1 as

dit = max{0,d) = > Ay wp’ (I /(n— i+ 1)},

xeX beB
utl as
ultt =max{0,ul = > D A, . pp (x)Wh/(n— i+ 1)}.
xeX beB

5. Generate P'*! from P’ and p'.
6. Set i =i+1.
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Mean and max. underdose by fraction — non-reactive

=
Sy
T
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T T
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Mean and maximum underdose as percentage of 2.4Gy by fraction
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Mean and max. underdose by fraction — reactive

Mean and maximum underdose as a percentage of 2.4Gy by fraction
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