Adaptive and Robust Radiation Therapy Optimization for Lung Cancer

Velibor V. Mišić † Timothy C. Y. Chan †

† Department of Mechanical and Industrial Engineering, University of Toronto

November 15, 2011

INFORMS Annual Meeting 2011, Charlotte, NC

Lung cancer

- Leading cause of cancer death in the US and Canada
- ▶ Over 180,000 deaths this year; 25% of cancer deaths

Intensity modulated radiation therapy (IMRT)

- Very popular form of radiation therapy
- Several beams; each beam consists of smaller beams or beamlets
- Basic problem: find beamlet intensities that deliver at least some prescription dose to the tumour at minimal healthy tissue damage

Uncertainty

- For lung cancer, most significant uncertainty comes from breathing motion
- ► Patient breathes; tumour is not in the same position during treatment session
- Breathing pattern is not known precisely

Approaches to uncertainty

- ► Nominal approach: assume patient will breathe according to a single breathing pattern
 - If actual breathing pattern is different from planned, tumour underdose is very likely
- ► Margin approach: assume patient can breathe according to any breathing pattern
 - Tumour dose is guaranteed to be sufficient, but cost to healthy tissue is high
- ▶ **Robust optimization**: Given a set of breathing patterns, find the treatment that minimizes damage to healthy tissue and meets tumour dose constraints under those breathing patterns (Bortfeld et al. 2008)

Robust optimization - uncertainty

- X: a set of breathing motion states
- ▶ $\mathbf{p} = (p(x))_{x \in X}$: a breathing motion probability mass function (PMF)
- p(x): proportion of time patient spends in state x during a treatment session
- ▶ *P*: uncertainty set; collection of **p** vectors that we wish to protect ourselves against

Robust optimization - decision variables and parameters

- ▶ B: set of beamlets to be used for treatment
- w_b : intensity of beamlet $b \in \mathcal{B}$
- \triangleright \mathcal{V} : set of all voxels; \mathcal{T} : set of tumour voxels
- ▶ For each voxel v, motion state x and beamlet b, a dose deposition coefficient $\Delta_{v,x,b}$
- Dose to voxel v under PMF p:

$$\sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b$$

 $ightharpoonup heta_{
m v}$: minimum prescription dose of tumour voxel $v \in \mathcal{T}$

Robust optimization - model

Formulation is

$$\begin{split} & \underset{v \in \mathcal{V}}{\text{minimize}} & & \sum_{v \in \mathcal{V}} \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} \bar{p}(x) w_b \\ & \text{subject to} & & \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b \geq \theta_v, \quad \forall \ v \in \mathcal{T}, \ \forall \ \mathbf{p} \in P, \\ & & \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b \leq \gamma \theta_v, \quad \forall \ v \in \mathcal{T}, \ \forall \ \mathbf{p} \in P, \\ & & w_b \geq 0, \quad \forall \ b \in \mathcal{B}, \end{split}$$

where $\bar{\mathbf{p}}$ is a PMF representative of the patient's overall breathing and $\gamma \geq 1$.

Robust optimization - properties

▶ If patient's PMF p is in P while w* (optimal solution for RO problem with P) is being delivered, then

$$d_{v} = \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_{b}^{*} \ge \theta_{v}$$

for every tumour voxel v

▶ Generally, the larger P is, the more dose is delivered to healthy tissue under \mathbf{w}^* . (If $P^1 \supseteq P^2$, then

Obj. value with
$$P^1 \ge \text{Obj.}$$
 value with P^2

holds)

... so what's the problem?

Fractionation:

- Prescribed dose is divided up into n smaller amounts (fractions)
- ► Each fraction is delivered once a day every day for a period of 4 6 weeks
- ▶ Healthy tissue heals faster than cancerous tissue

Fractionation (continued)

- ▶ In Bortfeld et al. (2008), planner solves one problem before start of treatment, gets **w**, delivers **w**/n in every fraction (static) ...
- but what if patient's p changes over treatment?
 - Patient may be nervous in the beginning, but become more relaxed by the end
 - Progression of disease may change patient's breathing
- what if uncertainty set P was determined inappropriately?
 - ▶ *P* may be very large, but patient's **p**'s are actually tightly clustered around a single value

Adaptive robust optimization

Our idea: Solve a sequence of robust optimization problems (one for each fraction), with the uncertainty set updated using the most recent PMF each time, and deliver the resulting solutions

Initialization:

- 1. Select an initial uncertainty set P^1
- 2. Solve the robust problem associated with P^1 to obtain beamlet weight vector \mathbf{w}^1 for the first fraction

Initialization:

- 1. Select an initial uncertainty set P^1
- 2. Solve the robust problem associated with P^1 to obtain beamlet weight vector \mathbf{w}^1 for the first fraction

- 1. Deliver \mathbf{w}^i/n to the patient
- 2. Measure the patient's breathing, obtain \mathbf{p}^i
- 3. Generate new uncertainty set P^{i+1} from previous set P^i and just observed \mathbf{p}^i
- 4. Solve the robust problem with P^{i+1} to obtain beamlet weight vector \mathbf{w}^{i+1} for the next fraction
- 5. Set i = i + 1

- 1. Deliver \mathbf{w}^i/n to the patient
- 2. Measure the patient's breathing, obtain \mathbf{p}^{i}
- Generate new uncertainty set Pⁱ⁺¹ from previous set Pⁱ and just observed pⁱ
- 4. Solve the robust problem with P^{i+1} to obtain beamlet weight vector \mathbf{w}^{i+1} for the next fraction
- 5. Set i = i + 1

- 1. Deliver \mathbf{w}^i/n to the patient
- 2. Measure the patient's breathing, obtain \mathbf{p}^i
- 3. Generate new uncertainty set P^{i+1} from previous set P^i and just observed \mathbf{p}^i
- 4. Solve the robust problem with P^{i+1} to obtain beamlet weight vector \mathbf{w}^{i+1} for the next fraction
- 5. Set i = i + 1

- 1. Deliver \mathbf{w}^i/n to the patient
- 2. Measure the patient's breathing, obtain \mathbf{p}^i
- 3. Generate new uncertainty set P^{i+1} from previous set P^i and just observed \mathbf{p}^i
- 4. Solve the robust problem with P^{i+1} to obtain beamlet weight vector \mathbf{w}^{i+1} for the next fraction
- 5. Set i = i + 1

- 1. Deliver \mathbf{w}^i/n to the patient
- 2. Measure the patient's breathing, obtain \mathbf{p}^i
- 3. Generate new uncertainty set P^{i+1} from previous set P^i and just observed \mathbf{p}^i
- 4. Solve the robust problem with P^{i+1} to obtain beamlet weight vector \mathbf{w}^{i+1} for the next fraction
- 5. Set i = i + 1

Uncertainty sets

▶ The set of all probability distributions on *X*:

$$\mathcal{P} = \left\{ \mathbf{p} \in \mathbb{R}^{|X|} \ \middle| \ \forall \ x \in X, \ p(x) \ge 0; \ \sum_{x \in X} p(x) = 1
ight\}$$

▶ An uncertainty set P is specified by a lower bound vector ℓ and upper bound vector u:

$$P = \{ \mathbf{p} \in \mathcal{P} \mid \forall \ x \in X, \ \ell(x) \le p(x) \le u(x) \}.$$

Updating the uncertainty set

Exponential smoothing:

$$\ell^{k+1} = (1 - \alpha)\ell^k + \alpha \mathbf{p}^k$$
$$\mathbf{u}^{k+1} = (1 - \alpha)\mathbf{u}^k + \alpha \mathbf{p}^k$$

where $\alpha \in [0, 1]$.

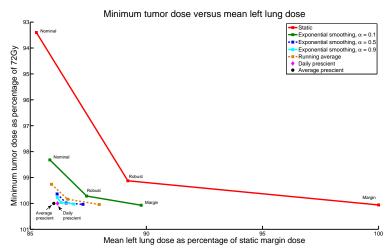
Running average:

$$\ell^{k+1} = \frac{1}{k+1} (\ell^1 + \sum_{i=1}^k \mathbf{p}^i)$$
 $\mathbf{u}^{k+1} = \frac{1}{k+1} (\mathbf{u}^1 + \sum_{i=1}^k \mathbf{p}^i)$

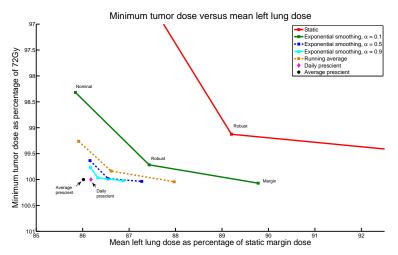
Computational results - I

- ▶ Sequence of real patient PMFs: $\mathbf{p}^1, \mathbf{p}^2, \dots, \mathbf{p}^n$
- Select initial uncertainty set
 - ▶ Nominal; $P = \{\tilde{\mathbf{p}}\}$
 - ▶ Margin; $P = \mathcal{P}$
 - ▶ Robust; in between $\{\tilde{\mathbf{p}}\}$ and \mathcal{P} .

Computational results - first PMF sequence



Computational results - first PMF sequence (zoomed in)



Computational results - takeaways

- Adaptive solutions are in general better than static solutions
- Choice of initial uncertainty set is less important than it is for static robust method
- ► Solutions are very close in quality to the prescient solution

Theoretical results

Suppose

$$\mathbf{p}^n \to \mathbf{p}^*$$

as $n \to \infty$. What can we say about

$$\frac{1}{n}\sum_{i=1}^{n}\Delta\mathbf{p}^{i}\mathbf{w}^{i}$$

as
$$n \to \infty$$
?
 $(\Delta \mathbf{pw} = [\sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b]_{v \in \mathcal{V}})$

Convex-convergent update algorithms

Call an uncertainty set update algorithm convex-convergent if:

1. Each update is a convex combination of the most recent \mathbf{p} and most recent ℓ/\mathbf{u} : for every $n \in \mathbb{Z}_+$, there exists $\alpha_n \in [0,1]$ such that

$$\boldsymbol{\ell}^{n+1} = (1 - \alpha_n)\boldsymbol{\ell}^n + \alpha_n \mathbf{p}^n,$$

$$\mathbf{u}^{n+1} = (1 - \alpha_n)\mathbf{u}^n + \alpha_n \mathbf{p}^n.$$

2. The updates inherit the convergence of the PMF sequence:

$$\mathbf{p}^n \to \mathbf{p}^* \Rightarrow \ell^n \to \mathbf{p}^*, \mathbf{u}^n \to \mathbf{p}^*.$$

Optimal solution sets

Let

- $\mathbf{w}^*(\mathbf{p}^*)$ be the set of optimal solutions to the robust problem with $P = {\mathbf{p}^*}$, and
- $\mathbf{w}^*(\ell, \mathbf{u})$ be the set of optimal solutions to the robust problem with P defined by ℓ and \mathbf{u} .

Optimal dose distribution set

Let

$$D = \{d \mid d = \Delta p^* w \text{ for some } w \in w^*(p^*)\}.$$

- ▶ D is the set of dose distributions that are obtained when a w from w*(p*) is delivered and p* is realized during delivery
- ▶ Every $\mathbf{d} \in \mathbf{D}$ meets the minimum tumour dose constraint (for every $v \in \mathcal{T}$, $d_v \geq \theta_v$)

Convergence of dose distributions

Theorem

Suppose $\mathbf{p}^n \to \mathbf{p}^*$ and $(\ell^n)_{n=1}^\infty$ and $(\mathbf{u}^n)_{n=1}^\infty$ are obtained by a convex-convergent update algorithm. Suppose $\mathbf{w}^i \in \mathbf{w}^*(\ell^i, \mathbf{u}^i)$ for each i.

Then for every $\epsilon > 0$, there exists an $N \in \mathbb{Z}_+$ such that for all n > N,

$$\frac{1}{n}\sum_{i=1}^n \Delta \mathbf{p}^i \mathbf{w}^i \in U(\mathbf{D}, \epsilon),$$

where

$$U(A, \epsilon) = \bigcup_{x \in A} B(x, \epsilon),$$

and $B(x, \epsilon)$ is the ϵ -ball at x.

Convergence of dose distributions (continued)

- ▶ For daily and average prescient, same theorem holds
- For static robust:

$$\frac{1}{n}\sum_{i=1}^{n}\Delta\mathbf{p}^{i}\mathbf{w}=\Delta\sum_{i=1}^{n}\frac{\mathbf{p}^{i}}{n}\mathbf{w}\rightarrow\Delta\mathbf{p}^{*}\mathbf{w}$$

as $n \to \infty$.

▶ $\Delta \mathbf{p}^* \mathbf{w}$ may have some underdosed tumour voxels, depending on where \mathbf{p}^* is with respect to the uncertainty set P of \mathbf{w}

Summary

- Adaptive robust method greatly improves on the static robust method
- Method achieves performance comparable to optimal prescient algorithms
- Simple and does not require a large amount of information pre-treatment (but does require work during treatment)

Future work

- Reducing the frequency of adaptation
- Adaptation in a distributionally-robust setting

Acknowledgements

- NSERC and CIHR for financial support
- ▶ Dr. Thomas Bortfeld at MGH for patient data

Thank you for listening!

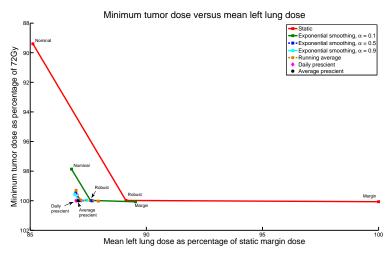
Questions/comments?

Extras

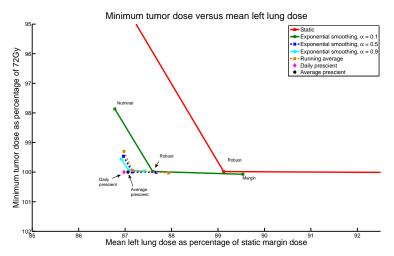
Prescient algorithms

- To analyze our results later, we also consider "prescient" algorithms
- Daily prescient algorithm:
 - On day i, set $\ell^i = \mathbf{u}^i = \mathbf{p}^i$, so $P^i = \{\mathbf{p}^i\}$
 - ▶ On each day, tumour voxel v receives at least θ_v/n , so by end it receives at least θ_v
- Average prescient algorithm:
 - ► Calculate the average PMF: $\mathbf{p}_{avg} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{p}^{i}$.
 - On day *i*, set $\ell^i = \mathbf{u}^i = \mathbf{p}_{avg}$, so $P^i = {\mathbf{p}_{avg}}$
 - ightharpoonup By end of treatment, each tumour voxel v receives at least $heta_v$

Computational results - second PMF sequence



Computational results - second PMF sequence (zoomed in)



Reactive method

Define \mathbf{d}^1 as $d_v^1 = \theta_v$ for $v \in \mathcal{T}$, \mathbf{u}^1 as $u_v^1 = \gamma \theta_v$ for $v \in \mathcal{T}$. Start with i = 1.

1. Solve to obtain \mathbf{w}^i :

$$\begin{split} & \text{minimize } \sum_{v \in \mathcal{V}} \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} \bar{p}(x) w_b \\ & \text{subject to } \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b \geq d_v^i, \quad \forall v \in \mathcal{T}, \ \mathbf{p} \in P, \\ & \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p(x) w_b \leq u_v^i, \quad \forall v \in \mathcal{T}, \ \mathbf{p} \in P, \\ & w_b \geq 0, \quad \forall b \in \mathcal{B}. \end{split}$$

- 2. Deliver $\mathbf{w}^i/(n-i+1)$.
- 3. Observe \mathbf{p}^i .

Reactive method (continued)

4. Set \mathbf{d}^{i+1} as

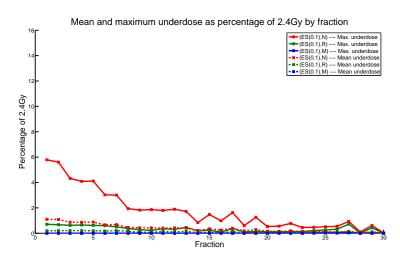
$$d_{v}^{i+1} = \max\{0, d_{v}^{i} - \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p^{i}(x) w_{b}^{i} / (n-i+1)\},$$

$$\mathbf{u}_{v}^{i+1}$$
 as

$$u_{v}^{i+1} = \max\{0, u_{v}^{i} - \sum_{x \in X} \sum_{b \in \mathcal{B}} \Delta_{v,x,b} p^{i}(x) w_{b}^{i} / (n-i+1)\}.$$

- 5. Generate P^{i+1} from P^i and \mathbf{p}^i .
- 6. Set i = i + 1.

Mean and max. underdose by fraction – non-reactive



Mean and max. underdose by fraction – reactive

