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Lung cancer

I Leading cause of cancer death in the US and Canada

I Over 180,000 deaths this year; 25% of cancer deaths
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Intensity modulated radiation therapy (IMRT)

I Very popular form of radiation therapy

I Several beams; each beam consists of smaller beams or
beamlets

I Basic problem: find beamlet intensities that deliver at least
some prescription dose to the tumour at minimal healthy
tissue damage
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Uncertainty

I For lung cancer, most significant uncertainty comes from
breathing motion

I Patient breathes; tumour is not in the same position during
treatment session

I Breathing pattern is not known precisely
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Approaches to uncertainty

I Nominal approach: assume patient will breathe according to
a single breathing pattern

I If actual breathing pattern is different from planned, tumour
underdose is very likely

I Margin approach: assume patient can breathe according to
any breathing pattern

I Tumour dose is guaranteed to be sufficient, but cost to healthy
tissue is high

I Robust optimization: Given a set of breathing patterns, find
the treatment that minimizes damage to healthy tissue and
meets tumour dose constraints under those breathing patterns
(Bortfeld et al. 2008)
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Robust optimization - uncertainty

I X : a set of breathing motion states

I p = (p(x))x∈X : a breathing motion probability mass function
(PMF)

I p(x): proportion of time patient spends in state x during a
treatment session

I P: uncertainty set; collection of p vectors that we wish to
protect ourselves against
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Robust optimization - decision variables and parameters

I B: set of beamlets to be used for treatment

I wb: intensity of beamlet b ∈ B
I V: set of all voxels; T : set of tumour voxels

I For each voxel v , motion state x and beamlet b, a dose
deposition coefficient ∆v ,x ,b

I Dose to voxel v under PMF p:∑
x∈X

∑
b∈B

∆v ,x ,bp(x)wb

I θv : minimum prescription dose of tumour voxel v ∈ T

Mǐsić and Chan: Adaptive robust IMRT optimization (Charlotte, 2011) Applied Optimization Lab, University of Toronto



Robust optimization - model

Formulation is

minimize
∑
v∈V

∑
x∈X

∑
b∈B

∆v ,x ,bp̄(x)wb

subject to
∑
x∈X

∑
b∈B

∆v ,x ,bp(x)wb ≥ θv , ∀ v ∈ T , ∀ p ∈ P,∑
x∈X

∑
b∈B

∆v ,x ,bp(x)wb ≤ γθv , ∀ v ∈ T , ∀ p ∈ P,

wb ≥ 0, ∀ b ∈ B,

where p̄ is a PMF representative of the patient’s overall breathing
and γ ≥ 1.
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Robust optimization - properties

I If patient’s PMF p is in P while w∗ (optimal solution for RO
problem with P) is being delivered, then

dv =
∑
x∈X

∑
b∈B

∆v ,x ,bp(x)w∗b ≥ θv

for every tumour voxel v

I Generally, the larger P is, the more dose is delivered to
healthy tissue under w∗. (If P1 ⊇ P2, then

Obj. value with P1 ≥ Obj. value with P2

holds)

Mǐsić and Chan: Adaptive robust IMRT optimization (Charlotte, 2011) Applied Optimization Lab, University of Toronto



... so what’s the problem?

Fractionation:

I Prescribed dose is divided up into n smaller amounts
(fractions)

I Each fraction is delivered once a day every day for a period of
4 - 6 weeks

I Healthy tissue heals faster than cancerous tissue
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Fractionation (continued)

I In Bortfeld et al. (2008), planner solves one problem before
start of treatment, gets w, delivers w/n in every fraction
(static) ...

I ... but what if patient’s p changes over treatment?
I Patient may be nervous in the beginning, but become more

relaxed by the end
I Progression of disease may change patient’s breathing

I ... what if uncertainty set P was determined inappropriately?
I P may be very large, but patient’s p’s are actually tightly

clustered around a single value
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Adaptive robust optimization

Our idea: Solve a sequence of robust optimization problems (one
for each fraction), with the uncertainty set updated using the most
recent PMF each time, and deliver the resulting solutions
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Our approach - I

Initialization:

1. Select an initial uncertainty set P1

2. Solve the robust problem associated with P1 to obtain
beamlet weight vector w1 for the first fraction
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Our approach - II

In iteration (fraction) i (∈ {1, . . . , n}):

1. Deliver wi/n to the patient

2. Measure the patient’s breathing, obtain pi

3. Generate new uncertainty set P i+1 from previous set P i and
just observed pi

4. Solve the robust problem with P i+1 to obtain beamlet weight
vector wi+1 for the next fraction

5. Set i = i + 1
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Uncertainty sets

I The set of all probability distributions on X :

P =

{
p ∈ R|X | ∀ x ∈ X , p(x) ≥ 0;

∑
x∈X

p(x) = 1

}

I An uncertainty set P is specified by a lower bound vector `
and upper bound vector u:

P = {p ∈ P ∀ x ∈ X , `(x) ≤ p(x) ≤ u(x)} .
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Updating the uncertainty set

I Exponential smoothing:

`k+1 = (1− α)`k + αpk

uk+1 = (1− α)uk + αpk

where α ∈ [0, 1].

I Running average:

`k+1 =
1

k + 1
(`1 +

k∑
i=1

pi )

uk+1 =
1

k + 1
(u1 +

k∑
i=1

pi )
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Computational results - I

I Sequence of real patient PMFs: p1,p2, . . . ,pn

I Select initial uncertainty set
I Nominal; P = {p̃}
I Margin; P = P
I Robust; in between {p̃} and P.
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Computational results - first PMF sequence
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Computational results - first PMF sequence (zoomed in)
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Computational results - takeaways

I Adaptive solutions are in general better than static solutions

I Choice of initial uncertainty set is less important than it is for
static robust method

I Solutions are very close in quality to the prescient solution
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Theoretical results

Suppose
pn → p∗

as n→∞. What can we say about

1

n

n∑
i=1

∆piwi

as n→∞?
(∆pw = [

∑
x∈X

∑
b∈B∆v ,x ,bp(x)wb]v∈V)
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Convex-convergent update algorithms

Call an uncertainty set update algorithm convex-convergent if:

1. Each update is a convex combination of the most recent p
and most recent `/u: for every n ∈ Z+, there exists
αn ∈ [0, 1] such that

`n+1 = (1− αn)`n + αnp
n,

un+1 = (1− αn)un + αnp
n.

2. The updates inherit the convergence of the PMF sequence:

pn → p∗ ⇒ `n → p∗,un → p∗.
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Optimal solution sets

Let

I w∗(p∗) be the set of optimal solutions to the robust problem
with P = {p∗}, and

I w∗(`,u) be the set of optimal solutions to the robust problem
with P defined by ` and u.
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Optimal dose distribution set

I Let
D = {d d = ∆p∗w for some w ∈ w∗(p∗)}.

I D is the set of dose distributions that are obtained when a w
from w∗(p∗) is delivered and p∗ is realized during delivery

I Every d ∈ D meets the minimum tumour dose constraint (for
every v ∈ T , dv ≥ θv )
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Convergence of dose distributions

Theorem

Suppose pn → p∗ and (`n)∞n=1 and (un)∞n=1 are obtained by a
convex-convergent update algorithm. Suppose wi ∈ w∗(`i ,ui ) for
each i .

Then for every ε > 0, there exists an N ∈ Z+ such that for all
n > N,

1

n

n∑
i=1

∆piwi ∈ U(D, ε),

where
U(A, ε) =

⋃
x∈A

B(x , ε),

and B(x , ε) is the ε-ball at x.
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Convergence of dose distributions (continued)

I For daily and average prescient, same theorem holds

I For static robust:

1

n

n∑
i=1

∆piw = ∆
n∑

i=1

pi

n
w→ ∆p∗w

as n→∞.

I ∆p∗w may have some underdosed tumour voxels, depending
on where p∗ is with respect to the uncertainty set P of w
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Summary

I Adaptive robust method greatly improves on the static robust
method

I Method achieves performance comparable to optimal prescient
algorithms

I Simple and does not require a large amount of information
pre-treatment (but does require work during treatment)
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Future work

I Reducing the frequency of adaptation

I Adaptation in a distributionally-robust setting

Mǐsić and Chan: Adaptive robust IMRT optimization (Charlotte, 2011) Applied Optimization Lab, University of Toronto



Acknowledgements

I NSERC and CIHR for financial support

I Dr. Thomas Bortfeld at MGH for patient data
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Thank you for listening!

I Questions/comments?
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Extras
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Prescient algorithms

I To analyze our results later, we also consider “prescient”
algorithms

I Daily prescient algorithm:
I On day i , set `i = ui = pi , so P i = {pi}
I On each day, tumour voxel v receives at least θv/n, so by end

it receives at least θv
I Average prescient algorithm:

I Calculate the average PMF: pavg = 1
n

∑n
i=1 p

i .
I On day i , set `i = ui = pavg, so P i = {pavg}
I By end of treatment, each tumour voxel v receives at least θv
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Computational results - second PMF sequence
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Computational results - second PMF sequence (zoomed in)
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Reactive method

Define d1 as d1
v = θv for v ∈ T , u1 as u1

v = γθv for v ∈ T . Start
with i = 1.

1. Solve to obtain wi :

minimize
∑
v∈V

∑
x∈X

∑
b∈B

∆v ,x ,bp̄(x)wb

subject to
∑
x∈X

∑
b∈B

∆v ,x ,bp(x)wb ≥ d i
v , ∀v ∈ T , p ∈ P,∑

x∈X

∑
b∈B

∆v ,x ,bp(x)wb ≤ uiv , ∀v ∈ T , p ∈ P,

wb ≥ 0, ∀b ∈ B.

2. Deliver wi/(n − i + 1).

3. Observe pi .
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Reactive method (continued)

4. Set di+1 as

d i+1
v = max{0, d i

v −
∑
x∈X

∑
b∈B

∆v ,x ,bp
i (x)w i

b/(n − i + 1)},

ui+1
v as

ui+1
v = max{0, uiv −

∑
x∈X

∑
b∈B

∆v ,x ,bp
i (x)w i

b/(n − i + 1)}.

5. Generate P i+1 from P i and pi .

6. Set i = i + 1.
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Mean and max. underdose by fraction – non-reactive

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

Fraction

P
er

ce
nt

ag
e 

of
 2

.4
G

y

Mean and maximum underdose as percentage of 2.4Gy by fraction

 

 

(ES(0.1),N) −− Max. underdose
(ES(0.1),R) −− Max. underdose
(ES(0.1),M) −− Max. underdose
(ES(0.1),N) −− Mean underdose
(ES(0.1),R) −− Mean underdose
(ES(0.1),M) −− Mean underdose
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Mean and max. underdose by fraction – reactive
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