morL

Non-coplanar beam orientation optimization for total marrow irradiation using IMRT

Velibor V. Mišić[†] Dionne M. Aleman[†] Michael B. Sharpe[‡]

[†] Department of Mechanical and Industrial Engineering, University of Toronto [‡] Princess Margaret Hospital: Department of Radiation Oncology. University of Toronto

June 17, 2009 CORS-INFORMS International Meeting 2009, Toronto

Bone Marrow Transplants (BMTs)

- Method of treatment for blood and bone marrow cancers (leukemia and lymphoma); also for aplastic anemia and sickle cell disease
- To transplant bone marrow, existing bone marrow must be eradicated – current method is total body irradiation (TBI)
- More effective methods of bone marrow elimination total marrow irradiation (TMI)

Intensity Modulated Radiation Therapy (IMRT)

- Conventional radiotherapy: beam is of homogeneous intensity
- IMRT: beam is broken into numerous beamlets; each beamlet's intensity is controllable
- Used successfully for other types of cancer (head-and-neck)

Has IMRT been applied to TMI before?

Yes, but

- Not within a mathematical framework
- Previous work studies irradiation from a greater distance

... So what are the problems?

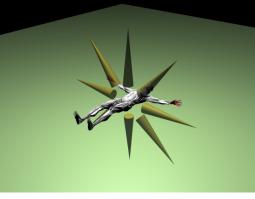
- For a set of beam directions, which beamlet intensities are optimal? And...
- Which beam directions do we use in the first place?

... So what are the problems?

- For a set of beam directions, which beamlet intensities are optimal? And...
- Which beam directions do we use in the first place?

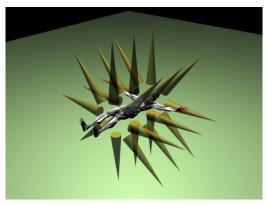
... So what are the problems?

- For a set of beam directions, which beamlet intensities are optimal? And...
- Which beam directions do we use in the first place?



Beam Orientation Optimization (BOO)

- Beams are obtained by
 - Rotating the gantry 10° increments
 - Translating the couch along patient's vertical axis 10 cm increments
- Beams are **non-coplanar**


Coplanar vs. non-coplanar

Coplanar

Coplanar vs. non-coplanar

Non-coplanar

BOO Model Overview

- Set of beam orientations is denoted by Θ
- Quality of set is denoted by function $\mathcal{F}(\Theta)$
- Goal is to optimize $\mathcal{F}(\Theta)$ over all possible sets of beams

The function ${\mathcal F}$

- Beam set quality can be formulated in many ways
- We use fluence map optimization (FMO) value from Romeijn et al. [2006]

FMO Model Overview (1)

- For a set of beam directions, which beamlet intensities are optimal?
- ► x_i is intensity of beamlet $i, i \in B_{\Theta}$
- ▶ z_{js} is dose in voxel j in structure s, $j \in \{1, \dots, v_s\}$, $s \in S$

$$\triangleright \ z_{js} = \sum_{i \in B_{\Theta}} D_{ijs} x_i$$

FMO Model Overview (2)

The dose in each voxel can be penalized:

$$F_{js}(z_{js}) = \left[\underline{w}_{s} \left(T_{s} - z_{js}\right)_{+}^{\underline{p}_{s}} + \overline{w}_{s} \left(z_{js} - T_{s}\right)_{+}^{\overline{p}_{s}}\right]$$
(1)

- ▶ <u>w_s</u>, w_s are weights for underdosing and overdosing; <u>p_s</u>, p_s are powers for underdosing and overdosing
- Total penalty is $\sum_{s \in S} \left(\frac{1}{v_s} \sum_{j=1}^{v_s} F_{js}(z_{js}) \right)$

FMO Model Overview (2)

The dose in each voxel can be penalized:

$$F_{js}(z_{js}) = \left[\underline{w}_{s}\left(T_{s} - z_{js}\right)_{+}^{\underline{p}_{s}} + \overline{w}_{s}\left(z_{js} - T_{s}\right)_{+}^{\overline{p}_{s}}\right]$$
(1)

- \underline{w}_s , \overline{w}_s are weights for underdosing and overdosing; \underline{p}_s , \overline{p}_s are powers for underdosing and overdosing
- ▶ Total penalty is $\sum_{s \in S} \left(\frac{1}{v_s} \sum_{j=1}^{v_s} F_{js}(z_{js}) \right)$

FMO Model Overview (2)

The dose in each voxel can be penalized:

$$F_{js}(z_{js}) = \left[\underline{w}_{s}\left(T_{s} - z_{js}\right)_{+}^{\underline{p}_{s}} + \overline{w}_{s}\left(z_{js} - T_{s}\right)_{+}^{\overline{p}_{s}}\right]$$
(1)

- \underline{w}_s , \overline{w}_s are weights for underdosing and overdosing; \underline{p}_s , \overline{p}_s are powers for underdosing and overdosing
- Total penalty is $\sum_{s \in S} \left(\frac{1}{v_s} \sum_{j=1}^{v_s} F_{js}(z_{js}) \right)$

FMO Model Overview (3)

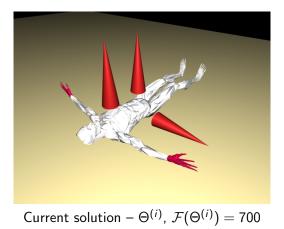
Model is

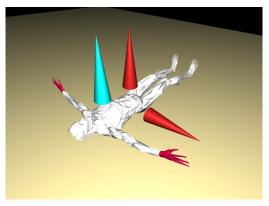
$$\begin{array}{ll} \min & \sum_{s \in S} \left(\frac{1}{v_s} \sum_{j=1}^{v_s} F_{js}(z_{js}) \right) \\ \text{subject to} & z_{js} = \sum_{i \in B_{\Theta}} D_{ijs} x_i, \ \forall j \in \{1, \dots, v_s\}, \ s \in S \\ & x_i \ge 0, \ \forall i \in B_{\Theta} \end{array}$$

$$(2)$$

FMO model is convex, solvable using projected gradient method

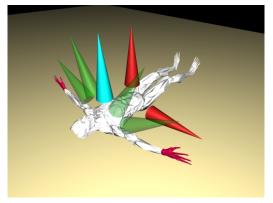
Add/Drop (A/D) Algorithm


- Neighborhood search algorithm
- Previously used in Kumar [2005] and Aleman et al. [2008]


One iteration of A/D

- 1. Select a beam and a component (gantry angle/z trans.)
- Enumerate all the Θ in the beam-component neighborhood of current Θ (Θ⁽ⁱ⁾)
- 3. Calculate $\mathcal F$ for all of these solutions
- 4. Set $\Theta^{(i+1)}$ to the most improving new Θ (if any)

Select a beam and a component

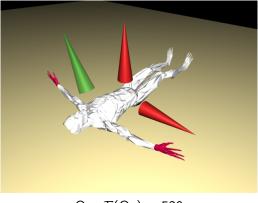

Non-coplanar beam orientation optimization for TMI

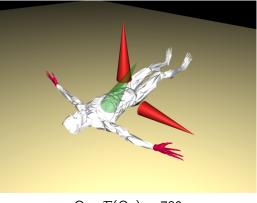
Medical Operations Research Laboratory (morLAB)

Introduction Beam Orientation Optimization Add/Drop Algorithm Results References

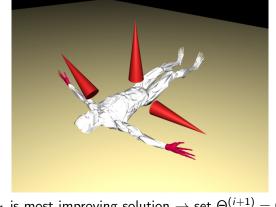


One iteration of A/D - graphical example


Enumerate solutions in the neighborhood of $\Theta^{(i)}$


 Θ_1 , $\mathcal{F}(\Theta_1) = 490$

 Θ_2 , $\mathcal{F}(\Theta_2) = 520$


 Θ_3 , $\mathcal{F}(\Theta_3) = 780$

 Θ_4 , $\mathcal{F}(\Theta_4) = 770$

 Θ_1 is most improving solution \rightarrow set $\Theta^{(i+1)} = \Theta_1$

Types of
$$A/D$$

- ▶ Most basic is sequential (1, G), (1, z), (2, G), (2, z) ...
- \blacktriangleright Other types: probabilistic, dynamic δ

$\mathsf{Probabilistic}\ \mathsf{A}/\mathsf{D}$

- In each iteration, beam and component pair are randomly selected
- Selection probabilities calculated using the average of the recent improvements of each pair, relative to overall average

$$\bar{p}(b,d) = \Pr\left(\mathbf{B} = b, \mathbf{C} = d\right) = \frac{1}{k|D|} + \frac{lpha}{k|D|} \left(\frac{\Delta_{bdr} - \bar{\Delta}_m}{\bar{\Delta}_m}\right)$$
 (3)

 \blacktriangleright Sensitivity of probabilities to recent improvement can be controlled using an additional parameter α

Dynamic δ

- In basic A/D, neighborhood size (δ) is constant
- ▶ In dynamic δ A/D, δ changes to reflect how much solution moved previously
- Large moves \rightarrow large neighborhood sizes
- Small moves \rightarrow small neighborhood sizes

$$\bar{\delta_G} = c_{zG} ||\bar{\Theta} - \Theta^{(i)}||$$

$$\bar{\delta_z} = c_{Gz} ||\bar{\Theta} - \Theta^{(i)}||$$
(4)
(5)

Results

- Executed on Beowulf CentOS cluster with 32 nodes
- Each node has 8 2GHz processors and 8GB of memory
- In each A/D iteration, each FMO calculation assigned to a different processor

morLAB

Numerical Results

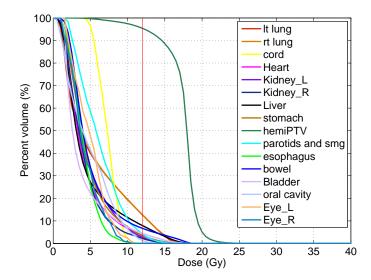
10 executions, 12 hours, $\delta_{G}=20^{\circ},\,\delta_{z}=20$ cm, random starting point

A/D	Avg.	Avg.	Avg. Prop.
Туре	Final FMO	Num. Iter.s	Improv. Iter.s
SC	11370.4	40.9	32.69%
Pr, $lpha=$ 0	10978.5	42.7	35.92%
Pr, $lpha=$ 0.25	11429.1	41.5	35.17%
Pr, $lpha=$ 0.5	11083.4	45.5	35.95%
Pr, $lpha=$ 0.75	11133.8	44.2	33.89%
Pr, $lpha=1$	11071.2	48.5	37.21%
D δ , $c_{Gz}=2.5$ $c_{zG}=1$	10942.5	30.1	36.97%

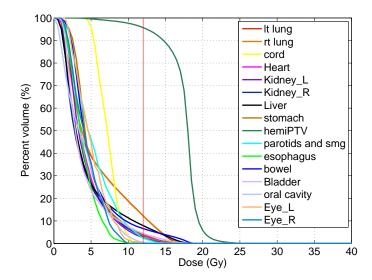
Treatment Plan Criteria

Criteria used:

- ▶ 95% of bone marrow receives more than 12Gy
- At most 20% of bone marrow receives more than 20Gy
- ▶ 0% of bone marrow receives more than 25Gy
- Majority of OAR volume receives less than 8Gy

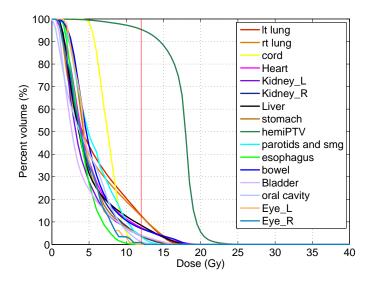


General Results


- Generally all criteria were met
- Hardest to spare well: spinal cord and lungs

morLAB

DVHs – Sequential Cycling A/D, 30 beams


DVHs – Probabilistic A/D ($\alpha = 0.75$), 30 beams

morLAB

morLAB

DVHs – Dynamic δ A/D, 30 beams

Conclusions

- IMRT with non-coplanar beams allows for more effective treatment than TBI
- Add/Drop can obtain such plans in a clinically realistic timeframe and environment

The Future

- Other variants of A/D
- Other algorithms
- Clinical realizability
 - Incorporation of patient and organ motion
 - Design of arc therapy plans

Thank you for listening

Questions?

Non-coplanar beam orientation optimization for TMI

Medical Operations Research Laboratory (morLAB)

- D. M. Aleman, A. Kumar, R K. Ahuja, H. E. Romeijn, and J. F. Dempsey. Neighborhood search approaches to beam orientation optimization in intensity modulated radiation therapy treatment planning. *Journal of Global Optimization*, 42(4):587–607, 2008.
- A. Kumar. Novel methods for intensity-modulated radiation therapy treatment planning. PhD thesis, University of Florida, 2005.
- H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, and A. Kumar. A new linear programming approach to radiation therapy treatment planning problems. *Operations Research*, 54(2):201–216, 2006.