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We consider the beam orientation optimization (BOO) problem for total marrow irradiation (TMI) treat-
ment planning using intensity modulated radiation therapy (IMRT). Currently, IMRT is not widely used in
TMI treatment delivery; furthermore, the effect of using non-coplanar beam orientations is not known.
We propose and implement several variations of a single neighborhood search algorithm that solves
the BOO problem effectively when gantry angles and couch translations are considered. Our work shows
that the BOO problem for TMI cases can be solved in a clinically acceptable amount of time and leads to
treatment plans that are more effective than the conventional approach to TMI.
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1. Introduction

Total marrow irradiation (TMI) is a technique that delivers radi-
ation to the entire body of a patient. The goal of TMI is to destroy
the patient’s bone marrow in preparation for a bone marrow trans-
plant (BMT). Currently, TMI is most commonly performed by first
irradiating one side of the patient’s body using two beams, then
rotating the patient and irradiating the other side using the same
beams. Although it is possible to protect some of the patient’s or-
gans using organ shields, this therapy generally does not allow
for effective sparing of most of the patient’s organs, as most of
the patient’s body receives the TMI dose intended for the bone
marrow. As a result, the higher dose levels needed to ensure com-
plete marrow elimination cause greater toxicity effects in healthy
organs [1]. Additionally, the patient is placed far from isocenter
in order to cover as much of the patient’s body as possible with
radiation: as a result, there is a high degree of uncertainty in
how much dose is delivered to the patient’s body. In contrast, in
typical site-specific treatments, the patient is positioned at isocen-
ter to ensure accuracy of the delivery.

In order to make TMI more accurate, we propose using IMRT to
deliver the treatments. There has been little research into using
IMRT with TMI. In [2,3], the authors consider the delivery of TMI
using IM-TMI (intensity modulated total marrow irradiation) and
ll rights reserved.
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show that using standard commercial planning systems, large
reductions in dose to organs such as the liver, kidneys and heart
can potentially be achieved. In [4,5], the authors consider TMI
using helical tomotherapy, and similarly show that the dose deliv-
ered to critical organs can be significantly reduced from conven-
tional TMI levels. Unlike these previous studies, we consider the
problem of TMI treatment planning within a mathematical frame-
work that has been successfully applied to head-and-neck cancer
cases (for example [6,7]). We also consider far more critical
structures than [2]. To our knowledge, there are no other studies
that approach TMI treatment planning from a mathematical per-
spective or that have considered as many critical structures as
we do.

To bring the patient up to isocenter to allow for IMRT, we use
non-coplanar beams in our beam orientation optimization (BOO)
problem, thereby reducing the uncertainty in delivered dose. We
integrate the BOO and fluence map optimization (FMO) problems
by assigning the objective function of BOO to be the optimal solu-
tion to the FMO problem. The convexity of our FMO model facili-
tates this integration. While our FMO model is solved with a
simple projected gradient algorithm, we modify the Add/Drop
BOO algorithm presented in [6] to address the need for non-copla-
nar beams in BOO. In particular, we develop a new neighborhood
structure specifically to address the nature of non-coplanar beam
selection. This neighborhood has not been proposed in the BOO lit-
erature, non-coplanar or otherwise. Using this approach, we are
able to develop non-coplanar beam solutions for TMI that deliver
high quality treatments in a clinically feasible period of time.
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The paper is organized as follows. The remainder of this section
introduces our BOO and FMO formulations. Section 2 discusses the
Add/Drop algorithm and variations. Section 3 presents the results
of applying the Add/Drop algorithm to our BOO and FMO models,
and Section 4 discusses conclusions and future directions.

1.1. BOO model

The BOO problem for IMRT treatment planning has been well
studied (see [8–10] for examples of BOO formulations) although
little research has been done in the consideration of non-coplanar
beams in BOO, especially in the context of TMI+IMRT.

Our formulation of the BOO problem is as follows. Let H be a
vector containing the orientations of k beams defined as
H ¼ ðh1; h2; . . . ; hkÞ>. Each orientation h is itself a vector of two
components—the gantry angle (G) and the couch z-translation
(z)—and is defined as

h ¼
hG

hz

� �
:

The gantry angle and the couch z-translation are restricted to their
respective sets of permissible values, SG and Sz, respectively:

hG 2 SG ¼ fLG; LG þ gG; LG þ 2gG; . . . ;UGg;
hz 2 Sz ¼ fLz; Lz þ gz; Lz þ 2gz; . . . ;Uzg;

where L and U represent the lower and upper limits of the compo-
nents’ values, respectively, and g is the discretization increment for
each component. In our study, the gantry angle was allowed to
range from 0 to 350� in 10� increments. Similarly, the couch z-trans-
lation was allowed to range from �160 cm (placing the isocenter
below the pelvis) to �60 cm (placing the isocenter at the top of
the head), in 10 cm increments. Although it is possible to extend
this range and cover the patient’s legs as well, it was deemed
unnecessary as the legs do not contain any critical structures and
can be treated separately from the rest of the body.

The set of all possible orientations for a single beam is repre-
sented by B ¼ fh : hG 2 SG; hz 2 Szg; the set of all possible sets of
orientations for k beams is given by Bk ¼ B � � � � � B (k times).
The BOO model is then

minimize FðHÞ;
subject to H 2 Bk;

where the function FðHÞ is the optimal FMO value that results from
using the beams specified by H in the FMO problem. The function
Fð�Þ is formulated in such a way that lower values of F correspond
to better treatments.

1.2. FMO model

The FMO problem optimizes the fluences of the beamlets of a
given set of beams. In previous studies, the FMO problem has been
modelled in many ways (see [9,11] for examples of FMO models).
We use a convex FMO model which is amenable to convex optimi-
zation solution techniques, such as the projected gradient and inte-
rior point methods. It has been proved that formulating the
problem as a convex optimization problem with voxel-based pen-
alty functions leads to a model that is essentially the same as a
multi-criteria optimization model with convex treatment plan cri-
teria [12]. Thus, we use the model presented in [12] and in our pre-
vious work [6,7,13].

The set of critical structures is denoted by S; the set of target
structures is denoted by T. We represent the fluence of beamlet i
by xi, and we denote the set of beamlets for a particular beam ori-
entation h by Bh. The dose deposited in a voxel j in structure s is de-
noted zjs and is defined in the optimization model. Dijs in the model
is the dose deposition coefficient for beamlet i and voxel j in struc-
ture s; v s is the number of voxels in structure s.

The penalty function Fjs penalizes the amount of overdose or
underdose to each voxel, with Ts being the ideal dose for structure
s:

FjsðzjsÞ ¼
1
v s

ws ðTs � zjsÞþ
� �ps þws ðzjs � TsÞþ

� �ps
� �

:

The function ð�Þþ represents maxð�;0Þ. The quantities ws and ws are
the coefficients for overdosing and underdosing respectively, while
ps and ps are the powers for overdosing and underdosing respec-
tively. To ensure convexity, we set ws;ws P 0 and ps;ps P 1. The
penalty function is normalized by 1=vs.

The problem for a given set of beams H is then:

minimize
P

s2S[T

Pvs

j¼1
FjsðzjsÞ;

subject to zjs ¼
P
h2H

P
i2Bh

Dijsxi j ¼ 1; . . . ;v s; s 2 S [ T;

xi P 0 i 2 Bh; h 2 H:

To solve our FMO problem we use a standard projected gradient
algorithm. Although the accuracy of the solution cannot be guaran-
teed, empirical testing indicates that projected gradient methods
consistently return quality treatment plans.
2. Materials and methods

The Add/Drop algorithm used for BOO is a deterministic local
search procedure. A single iteration of the Add/Drop algorithm is
performed by enumerating all of the solutions (and their
corresponding FMO values) in some neighborhood of the current
solution, and moving to the most improving solution in the neigh-
borhood if there are any improving solutions. (In the case that two
or more solutions are tied for the most improving solution, the
choice is made arbitrarily, although we have never observed such
a situation occurring in practice.) The neighborhood that is
searched changes from iteration to iteration, and the algorithm
stops if all of the neighborhoods of the current solution have been
searched without leading to an improvement. Once the algorithm
reaches a solution, it is repeated until a specific number of execu-
tions has been performed.

Search techniques have been applied to coplanar BOO in the
past (see for example [14,15]) as well as to non-coplanar BOO
(see for example [16,17]). In most studies which apply search tech-
niques to coplanar BOO, the search method that is proposed can be
applied with some modification to the non-coplanar TMI case;
however, adapting the method of objective function evaluation to
a larger patient anatomy poses a much greater challenge. For
example, in [14], a local search method is proposed where the
quality of a set of beams is obtained by solving a linear program
with two constraints per voxel. Applying this method to our prob-
lem (i.e., using the same number of beams and the same patient)
would result in very large linear programs (approximately 1.3 mil-
lion constraints and 90,000 variables) that would require much
more memory to solve than the convex formulation we use. The
approach in [15], which involves solving a linear programming for-
mulation of the FMO problem iteratively with fewer and fewer
beams, is affected by the same problem.

Different types of neighborhood structures have been proposed
in prior BOO work. In [17], non-coplanar beams are obtained by
changing both the gantry and couch angles, and the neighborhood
of beams considered for addition to the solution consists of all pos-
sible combinations of gantry and couch angles. In [16], non-copla-
nar beams are obtained by changing both the gantry and couch
angles: the neighborhood of a beam in the solution consists of all
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beams within a certain angular distance of the current beam, and
at least some angular distance away from the other beams in the
solution. A neighborhood of a single beam can therefore contain
candidate beams which differ in couch angle as well as beams
which differ in gantry angle. In [14], which studies coplanar BOO,
the beams are numbered from 1 to R (which is the number of
beams) and the neighborhood of a beam hi consists of beams from
hi to hiþ1 (i.e., the beam can only be rotated in one direction).

In contrast to these studies, the neighborhood structure that we
propose for the non-coplanar BOO problem only allows for a single
component of a single beam in the solution to be altered at a time
in more than one direction. Such a neighborhood is desirable be-
cause it strikes a balance between how effectively the search space
is explored and the number of FMO evaluations that are performed
in each iteration which, due to the large number of voxels, are
much more computationally intensive than they are for site-spe-
cific treatment planning. (In contrast, neighborhoods where more
than one component of a beam and/or more than one beam can
change would lead to a higher number of solutions and thus a
higher number of FMO evaluations in each iteration.) Furthermore,
the new beam that replaces the old beam in the solution is not re-
stricted in how close it can be to the other beams in the solution;
this allows the algorithm to access more of the solution space ear-
lier on and increases the likelihood of finding a good solution early
in the search. This type of neighborhood structure, to the best of
our knowledge, has not been previously studied for non-coplanar
BOO.
2.1. Neighborhood definition

The Add/Drop algorithm in each iteration searches a neighbor-
hood of the current solution which is defined relative to a single
beam and a single component/degree of freedom. An arbitrary de-
gree of freedom is represented by d; the set of all possible compo-
nents is denoted by D. In our study, D ¼ fG; zg, where G represents
the gantry angle and z represents couch z-translation.

For clearer exposition, we define the neighborhood in three
steps. We first define the neighborhood for a single component
of a single beam; in the case of an angular component (i.e., the gan-
try rotation), we have

NdðhdÞ ¼ fh0d mod360 2 Sd : hd � dd 6 h0d 6 hd þ ddg;

and in the case of a translational component (i.e., couch translation),
we have the expression:

NdðhdÞ ¼ fh0d 2 Sd : hd � dd 6 h0d 6 hd þ ddg:

The expression for the angular component incorporates the cyclic
nature of angular movements – for example, 370� is equivalent to
10�. The d variables specify the size of the neighborhood around
the current value of the component.

Next, we define the neighborhood of a single beam, relative to a
single component:

NdðhÞ ¼ fh0 2 B : h0d 2 NdðhdÞ ^ h0�d ¼ h�d; 8�d 2 D; �d – dg:

In other words, only one component of the beam is allowed to
move. The other component is fixed.

We now provide the final definition of a neighborhood for a
solution vector of beams relative to a single component d and a sin-
gle beam b:

N bdðHÞ ¼ fðh1; h2; . . . ; h0b; . . . ; hkÞ 2 Bk : h0b 2 NdðhbÞg:

In other words, only one component of the bth beam is allowed to
move at a time.
2.2. Basic Add/Drop algorithm definition

The basic Add/Drop algorithm is defined as Algorithm 1. Several
implementations of the algorithm are tested for BOO in TMI. Each
method is a variation of the basic version, created by modifying the
selection of beam-component pairs in Step 4 or the generation of
starting points in Step 1.

Algorithm 1. Basic Add/Drop
1: Generate initial starting point H0.
2: Set H� :¼ H0 and i :¼ 0.
3: while Stopping criterion is not met do
4: Select d 2 D and b 2 f1; . . . ; jHjg.
5: Set �H 2 arg minFðN bdðHiÞ.
6: if Fð �HÞ < FðH�Þ then
7: Set H� :¼ �H and Hiþ1 :¼ �H.
8: Set i :¼ iþ 1.
9: end if

10: if All points in
Sk

b¼1
S

d2DN bdðHiÞ have been sampled
without improvement then

11: H� is a local minimum; go to Step 16.
12: else
13: Go to Step 4.
14: end if
15: end while
16: return H�.
2.3. Variations on the Add/Drop algorithm

Along with the basic Add/Drop algorithm, our study includes
several variations on the basic version. Variations include how
the beam-component pair considered in a particular iteration is
chosen and how starting points are generated after each execution.

2.3.1. Generation of starting points
We consider two methods of starting point generation. The first

method involves randomly generating a starting point in the solu-
tion space for which the objective function F has not yet been eval-
uated. The second method involves randomly generating a single
starting point for the first execution and rotating the gantry angle
of each beam by a certain amount for each subsequent execution.

2.3.2. Simple cycling
The Simple Cycling Add/Drop (SCAD) algorithm selects neigh-

borhoods and components in a sequential fashion. It first goes
through all of the components for a particular beam before select-
ing the next beam and going through all of the components for that
beam.

2.3.3. Probabilistic selection of beam-component pairs
In this variation, the beam-component pair is selected probabi-

listically based on previous improvements. The algorithm keeps
track of the most recent improvement in the FMO value that is
realized from the neighborhood of each beam-component pair,
and uses this set of improvements to construct probabilities which
are then used to randomly select the next beam and component.
Beam-component pairs that have recently led to higher improve-
ments have a higher probability of being selected than pairs that
led to lower improvements. Due to this difference, the algorithm
has the potential to converge more quickly to a local minimum
by having a tendency to explore promising neighborhoods first,
rather than being constrained to go through the neighborhoods
sequentially.
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Fig. 1. Improvement in FMO value by time for each Add/Drop implementation.
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Selection based on historical improvements. The algorithm uses a
joint probability mass function (PMF) that specifies the probability
of selecting a particular beam-component pair, which is defined in
terms of

�pðb;dÞ ¼

0 if ðb;dÞ 2 C;
1

kjDj�jCj þ a
kjDj�jCj

Dbdr��DmC
�DmC

� �
if ðb;dÞ R C and �DmC – 0;

1
kjDj�jCj otherwise;

8>><
>>:

where the random variables B and C are the beam and the compo-
nent, respectively; Dbdr is the average of the r most recent improve-
ments associated with beam b and component d; a is a weighting
parameter in ½0;1� that controls the emphasis of recent improve-
ments; the set C is the set of all pairs that are not to be sampled;
and �DmC is the average of the m most recent improvements of pairs
not in C. The formula assigns each ðb;dÞ pair that can be sampled a
uniform probability ð1=ðkjDj � jCjÞÞ and then adds or subtracts an
additional amount that depends on the improvement of each pair
relative to the overall average improvement. The values generated
in this manner are non-negative; the reason for this is that Dbdr is
always greater than or equal to 0, so the quotient ðDbdr � �DmCÞ=
�DmC is at least �1. With some algebraic manipulation it can then
be shown that

1
kjDj � jCj þ

a
kjDj � jCj

Dbdr � �DmC

�DmC

� 	
P

1
kjDj � jCj �

a
kjDj � jCj :

The lowest value that the right hand side can attain is 0, obtained by
setting a ¼ 1; we therefore must have that �pðb;dÞP 0.

The reason for incorporating the set C of pairs of that are not to
be sampled into the above expression for �pðb; dÞ is two-fold. If the
algorithm selects a non-improving beam-component pair then
intuitively, that pair should not be selected again until the iterate
changes. Similarly, if the algorithm finds an improving pair, it
may be desirable to exclusively explore other pairs in the subse-
quent iterates. This is based on the intuition that once a beam com-
ponent is improved, it may be unlikely to find significant further
improvement in that beam component until the other beams and
components are in new positions.

The selection probabilities pðb; dÞ are re-normalized so that the
total of all probabilities sums to 1:

pðb; dÞ ¼
�pðb; dÞPk

b0¼1

P
d02D

�pðb0;d0Þ
:
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3. Results

The algorithms were tested on a single patient case. Only one
patient was tested due to the time involved in contouring such a
large area. The Add/Drop algorithms were executed on a 64-bit,
32-node CentOS cluster, with each node having 8 GB of memory
and eight AMD Opteron 2354 processors. Each algorithm was exe-
cuted with 30 beams. Preliminary testing indicated that solutions
with fewer beams were unable to control the degree of overdosage
in the target structure due to the very large physical size of the
target.
0 5 10 15 20 25 30 35 40
10,000

12,000

Elapsed iterations

Fig. 2. Improvement in FMO value by iteration number for each Add/Drop
implementation.
3.1. Computational results

The average time required to evaluate a single FMO value is
approximately 17.1 min for a 30-beam plan. Each execution of
the Add/Drop algorithm was started with a randomly generated
starting set of beams. Each execution was also allowed to run for
a maximum of 12 h, as this amount of time is the most an optimi-
zation algorithm would be allowed to run in a clinical setting at the
Princess Margaret Hospital where this research is performed. For
both the SCAD and the probabilistic Add/Drop, dG and dz were set
to 20. The probabilistic Add/Drop variant was tested with r and
m both set to 5 and a values of 0, 0.25, 0.5, 0.75 and 1.

The plots of FMO value versus time and iteration shown in Figs.
1 and 2 respectively suggest that the SCAD is slower to converge to
its final FMO value than the probabilistic Add/Drop. This may be
because the SCAD in each execution samples approximately the
same number of beams, while the probabilistic Add/Drop is not
constrained in this way and has the potential to change more
beams in the solution over the course of one execution. Also, SCAD
checks both the gantry angle and the couch-z neighborhood for the
same beam, which may be unnecessary.

3.2. Treatment plan quality

Due to the relative absence of treatment planning in TMI, there
is a lack of clear criteria on what level of underdosage and overdos-
age is acceptable in the target and in the critical structures. To ad-



526 V.V. Mišić et al. / European Journal of Operational Research 205 (2010) 522–527
dress the quality of the treatment, we developed treatment plan
criteria with expert medical physicists and physicians from Prin-
cess Margaret Hospital. For the target structure, at least 95% of
the structure must receive at least 12 Gy, while a strict 25 Gy max-
imum must be observed. Any cells receiving more than 25 Gy un-
dergo fibrosis, making it impossible for the new bone marrow to
take hold. At most 20% of the bone marrow can receive more than
20 Gy.

Because TMI has yet to be performed with the accuracy of IMRT,
studies have not yet been done to indicate the amount of radiation
that each critical structure can tolerate under TMI conditions.
Based on consultations with our collaborators, we classify an organ
as spared if the majority of each organ should receive less than
8 Gy.

Dose-volume histograms (DVHs) are used to assess treatment
quality. The DVHs obtained from the SCAD and the probabilistic
Add/Drop variants in general met all of the goals, and do not ap-
pear to exhibit significant differences in organ sparing and marrow
elimination. One representative set of DVHs, obtained from an exe-
cution of the probabilistic Add/Drop with a ¼ 0:75, is shown in
Fig. 3 (the DVH curves for the organs are displayed on two graphs
for clarity of presentation). From this DVH we can see that our
methods are able to attain acceptable dose levels within the bone
marrow. We can also see that for most organs, the majority of the
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Fig. 3. DVHs for a representative 30-beam treatment from probabilistic Add/Drop.
The two graphs correspond to the same solution, but the critical structures are split
between the two graphs for clarity.
volume receives less than 8 Gy, suggesting that our methods lead
to an improvement over conventional TMI (where most of the or-
gans would receive around 12 Gy).

With regard to prior IM-TMI work, the solution in Fig. 3 com-
pares favorably to the solution given in [2]: in particular, the med-
ian doses for the lungs, liver, kidneys and heart are all lower than
5 Gy and are lower than the corresponding reported values in [2].
However, the solution given in [2] is able to control target and or-
gan overdose to a greater extent than the solution we provide in
Fig. 3. A reason for this is the larger set of organs that is considered
in this study; the more organs that are accounted for, the harder it
is to simultaneously spare all of the organs while achieving a de-
sired level of dose in the target.

One specific organ where the solution in [2] and our solution in
Fig. 3 greatly differ in sparing is the spinal cord. The spinal cord is
problematic because it is encased in a structure which contains
bone marrow (the spinal column) and is thus very difficult to
spare. The spinal cord is not considered explicitly in [2], and no
numerical results are provided about the amount of dose delivered
to the spinal cord. The only indication of the dose in the spinal cord
comes from the colour washes, which indicate that the spine is
irradiated to a dose between 12 Gy and 13 Gy—essentially the en-
tire target prescription dose. This amount is significantly greater
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Fig. 4. DVHs for a representative 30-beam treatment from SCAD, with reduced
spinal cord importance to provide a more direct comparison to [2]. Again, the two
graphs correspond to the same solution.
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than the amount delivered to the spinal cord by our solution in
Fig. 3.

With this in mind, we tested our algorithms with a different set
of FMO parameters which reduced the importance of the spinal
cord. A representative set of DVHs, obtained from an execution of
SCAD with these modified parameters, is shown in Fig. 4. (As be-
fore, the curves are shown on two graphs for clarity of presenta-
tion.) This solution shows reduced overdosage in the bone
marrow and most other organs, including the lungs, and with the
exception of the spinal cord, meets the treatment plan criteria
we have set. More significantly, this solution demonstrates the ver-
satility of our approach. Our approach can exploit the reduced
importance of the spinal cord to deliver a solution that exhibits
better overall organ sparing than the solution in [2], while still tak-
ing into account many more structures than [2].
4. Discussion

From our tests the SCAD and the probabilistic Add/Drop algo-
rithms are both capable of obtaining solutions that meet the rec-
ommended treatment plan criteria in 12 h from a single
execution and do not differ significantly in solution quality. More
testing on the current patient data and other patient data is re-
quired to reduce overdosage to the bone marrow and critical
structures.

In addition to the probabilistic Add/Drop, there are other vari-
ants of the Add/Drop algorithm that will be implemented. One var-
iant we are studying is a ‘‘dynamic d” Add/Drop, where the
neighborhood size is modified after each iteration in response to
how much the iterate shifted in that iteration. We are also studying
the Add/Drop algorithm in a multiple execution context where
points sampled in one execution of the Add/Drop algorithm are
used to generate the starting point for the next execution of the
Add/Drop. In particular, the concept of expected improvement
from response surface methods will be examined as a means to
generate new starting points.

To bring TMI+IMRT closer to a clinical viability, future research
will use this work as a starting point to explore optimal intensity
modulated arc therapy (IMAT) treatment plans. This will involve
designing an algorithm to ‘‘connect” the beams identified by our
algorithms, and to fill in the individual bixel time profiles along
the connecting arcs. Other future work will factor patient motion
into the FMO formulation and to use a robust optimization ap-
proach in order to make the treatment plans more suitable for
implementation with conventional IMRT (for examples of robust
optimization applied to IMRT treatment planning see [18–20]).
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