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Optimal stopping is the problem of deciding when to stop a stochastic system to obtain the greatest reward,
arising in numerous application areas such as finance, healthcare and marketing. State-of-the-art methods
for high-dimensional optimal stopping involve approximating the value function or to the continuation value,
and then using that approximation within a greedy policy. Although such policies can perform very well,
they are generally not guaranteed to be interpretable; that is, a decision maker may not be able to easily see
the link between the current system state and the policy’s action. In this paper, we propose a new approach
to optimal stopping, wherein the policy is represented as a binary tree, in the spirit of naturally interpretable
tree models commonly used in machine learning. We formulate the problem of learning such policies from
observed trajectories of the stochastic system as a sample average approximation (SAA) problem. We prove
that the SAA problem converges under mild conditions as the sample size increases, but that computationally
even immediate simplifications of the SAA problem are theoretically intractable. We thus propose a tractable
heuristic for approximately solving the SAA problem, by greedily constructing the tree from the top down.
We demonstrate the value of our approach by applying it to the canonical problem of option pricing, using
both synthetic instances and instances calibrated with real S&P 500 data. Our method obtains policies that
(1) outperform state-of-the-art non-interpretable methods, based on simulation-regression and martingale
duality, and (2) possess a remarkably simple and intuitive structure.

Key words : optimal stopping; approximate dynamic programming; interpretability; decision trees; option
pricing.

History :

1. Introduction
We consider the problem of optimal stopping, which can be described as follows: a system evolves
stochastically from one state to another in discrete time steps. At each decision epoch, a decision
maker (DM) chooses whether to stop the system or to allow it to continue for one more time step.
If the DM chooses to stop the system, she garners a reward that is dependent on the current state
of the system; if she chooses to allow it to continue, she does not receive any reward in the current
period, but can potentially stop it at a future time to obtain a higher reward. The DM must specify
a policy, which prescribes the action to be taken (stop/continue) for each state the system may
enter. The optimal stopping problem is to find the policy that achieves the highest possible reward
in expectation.

The optimal stopping problem is a key problem in stochastic control and arises in many important
applications; we name a few below:

1. Option pricing. One of the most important applications of optimal stopping is to the pricing
of financial options that allow for early exercise, such as American and Bermudan options. The
system is the collection of underlying securities (typically stocks) that the option is written
on. The prices of the securities comprise the system state. The decision to stop the system
corresponds to exercising the option and receiving the corresponding payoff; thus, the problem
of obtaining the highest expected payoff from a given option corresponds to finding an optimal
stopping policy. The highest expected payoff attained by such an optimal stopping (optimal
exercise) policy is then the price that the option writer should charge for the option.
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2. Healthcare. Consider an organ transplant patient waiting on a transplant list, who may be
periodically offered an organ for transplantation. In this context, the system corresponds to the
patient and the currently available organ, and the system state describes the patient’s health
and the attributes of the organ. The decision to stop corresponds to the patient accepting the
organ, where the reward is the estimated quality-adjusted life years (QALYs) that the patient
will garner upon transplantation. The problem is then to find a policy that prescribes for a
given patient and a given available organ whether the patient should accept the organ, or wait
for the next available organ, so as to maximize the QALYs gained from the transplant.

3. Marketing. Consider a retailer selling a finite inventory of products over some finite time
horizon. The system state describes the remaining inventory of the products, which evolves
over time as customers buy the products from period to period. The action of stopping the
system corresponds to starting a price promotion that will last until the end of the finite time
horizon. The problem is to decide at each period, based on the remaining inventory, whether to
commence the promotion, or to wait one more period, in order to maximize the total revenue
garnered by the end of the horizon.

Large-scale optimal stopping problems that occur in practice are typically solved by approximate
dynamic programming (ADP) methods. The goal in such ADP methods is to approximate the
optimal value function that, for a given system state, specifies the best possible expected reward
that can be attained when one starts in that state. With an approximate value function in hand,
one can obtain a good policy by considering the greedy policy with respect to the approximate
value function.

In ADP methods, depending on the approximation architecture, the approximate value function
may provide some insight into which states of the system state space are more desirable. However,
the policy that one obtains by being greedy with respect to the approximate value function need not
have any readily identifiable structure. This is disadvantageous, because in many optimal stopping
problems, we are not only interested in policies that attain high expected reward, but also policies
that are interpretable. A policy that is interpretable is one where we can directly see how the
state of the system maps to the recommended action, and the relation between state and action is
sufficiently transparent.

Interpretability is desirable for three reasons. First, in modeling a real world system, it is useful
to obtain some insight about what aspects of the system state are important for controlling it
optimally or near optimally. Second, a complex policy, such as a policy that is obtained via an ADP
method, may not be operationally feasible in many real life contexts. Lastly – and most importantly
– in many application domains where the decision maker is legally responsible or accountable for
the action taken by a policy, interpretability is not merely a desirable feature, but a requirement:
in such settings a decision maker will simply not adopt the policy without the ability to explain the
policy’s mechanism of action. There is moreover a regulatory push to increase the transparency and
interpretability of customer facing data-driven algorithms; as an example, General Data Protection
Regulation rules set by the EU (Doshi-Velez and Kim 2017) dictate that algorithms which can
differentiate between users must provide explanations for their decisions if such queries arise.

In this paper, we consider the problem of constructing interpretable optimal stopping policies
from data. Our approach to interpretability is to consider policies that are representable as a binary
tree. In such a tree, each leaf node is an action (stop or go), and each non-leaf node (also called
a split node) is a logical condition in terms of the state variables which determines whether we
proceed to the left or the right child of the current node. To determine the action we should take,
we take the current state of the system, run it down the tree until we reach a leaf, and take the
action prescribed in that leaf. An example of such a tree-based policy is presented in Figure 1a.
Policies of this kind are simple, and allow the decision maker to directly see the link between the
current system state and the action.

Before delving into our results, we comment on how one might compare such an aforementioned
interpretable policy with an optimal or, possibly, near-optimal heuristic policy. Our informal goal
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is to look for the best policy within the constraints of an interpretable policy architecture, which
in our case is tree-based policies. However, without any a priori knowledge that a given optimal
stopping problem is “simple enough”, one would expect that enforcing that the policy architecture
be interpretable carries a performance price; in other words, interpretable policies should generally
not perform as well as a state-of-the-art heuristic. On the other hand, one can hope that there
exist stopping problems where the price of interpretability is low, in that interpretable policies,
while sub-optimal, do not carry a large optimality gap. The present paper is an attempt to (a)
exhibit stopping problems of practical interest for which tree-based policies attain near-optimal
performance, along with being interpretable and (b) provide an algorithm to find such interpretable
policies directly from data.

We make the following specific contributions:
1. Sample average approximation. We formulate the problem of learning an interpretable

tree-based policy from a sample of trajectories of the system (sequences of states and pay-
offs) as a sample average approximation (SAA) problem. To the best of our knowledge, the
problem of directly learning a policy in the form of a tree for optimal stopping problems (and
Markov decision processes more generally) has not been studied before. We show that under
mild conditions, the tree policy SAA problem defined using a finite sample of trajectories con-
verges almost surely in objective value to the tree policy problem defined with the underlying
stochastic process, as the number of trajectories available as data grows large.

2. Computational tractability. From a computational complexity standpoint, we establish
that three natural simplifications of the SAA problem are NP-Hard and thus finding good
solutions to the SAA problem is challenging.

In response, we present a computationally tractable methodology for solving the learning
problem. Our method is a construction algorithm: starting from a degenerate tree consisting
of a single leaf, the algorithm grows the tree in each iteration by splitting a single leaf into two
new child leaves. The split is chosen greedily, and the algorithm stops when there is no longer
a sufficient improvement in the sample-based reward. Key to the procedure is determining the
optimal split point at a candidate split; we show that this problem can be solved in a compu-
tationally efficient manner. In this way, the overall algorithm is fully data-driven, in that the
split points are directly chosen from the data and are not artificially restricted to a collection
of split points chosen a priori. While the algorithm resembles top-down tree induction methods
from classification/regression, several important differences arising from the temporal nature
of the problem make this construction procedure algorithmically nontrivial.

3. Practical performance versus state-of-the-art ADP methods. We numerically demon-
strate the value of our methodology by applying it to the problem of pricing a Bermudan
option, which is a canonical optimal stopping problem in finance. We show that our tree poli-
cies outperform two state-of-the-art approaches, namely the simulation-regression approach
of Longstaff and Schwartz (2001) and the martingale duality-based approach of Desai et al.
(2012b). At the same time, we also show that the tree policies produced by our approach are
remarkably simple and intuitive. We further investigate the performance of our approach by
testing it on a stylized one-dimensional optimal stopping problem (not drawn from option
pricing), where the exact optimal policy can be computed; in general, our policy is either
optimal or very close to optimal.

The rest of this paper is organized as follows. In Section 2, we discuss the relevant literature
in ADP, machine learning and interpretable decision making. In Section 3, we formally define our
optimal stopping problem and its sample-based approximation, we define the problem of finding
a tree policy from sample data, and analyze its complexity. In Section 4, we present a heuristic
procedure for greedily constructing a tree directly from data. In Section 5, we present an exten-
sive computational study in option pricing comparing our algorithm to alternate approaches. In
Section 6, we evaluate our algorithm on the aforementioned one-dimensional problem. Finally, we
conclude in Section 7.
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2. Literature review
Our paper relates to three different broad streams of research: the optimal stopping and ADP
literature; the machine learning literature; and the multi-stage stochastic/robust optimization lit-
erature. We survey each of these below.
Approximate dynamic programming (ADP). ADP has been extensively studied in the opera-
tions research community since the mid-1990s as a solution technique for Markov decision processes
(Powell 2007, Van Roy 2002). In the last fifteen years, there has been significant interest in solving
MDPs by approximating the linear optimization (LO) model; at a high level, one formulates the
MDP as a LO problem, reduces the number of variables and constraints in a tractable manner,
and solves the more accessible problem to obtain a value function approximation. Some examples
of this approach include De Farias and Van Roy (2003), Adelman and Mersereau (2008), Desai
et al. (2012a) and Bertsimas and Mǐsić (2016).

A large subset of the ADP research literature, originating in both the operations research
and finance communities, has specifically studied optimal stopping problems. The seminal papers
of Carriere (1996), Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001) propose
simulation-regression approaches, where one simulates trajectories of the system state and uses
regression to compute an approximation to the optimal continuation value at each step. Later
research has considered the use of martingale duality techniques. The idea in such approaches is
to relax the non-anticipativity requirement of the policy by allowing the policy to use future infor-
mation, but to then penalize policies that use this future information, in the spirit of Lagrangean
duality. This approach yields upper bounds on the optimal value and can also be used to derive high
quality stopping policies. Examples include Rogers (2002), Andersen and Broadie (2004), Haugh
and Kogan (2004), Chen and Glasserman (2007), Brown et al. (2010) and Desai et al. (2012b).

Our approach differs from these generic ADP approaches and optimal stopping-specific
approaches in two key ways. First, general purpose ADP approaches, as well as those specifically
designed for optimal stopping, are focused on obtaining an approximate value function or an upper
bound on the value function, which is then used in a greedy manner. In contrast, our approach
involves optimizing over a policy directly, without computing/optimizing over a value function.
Second, our approach is designed with interpretability in mind, and produces a policy that can be
easily visualized as a binary tree. In contrast, previously proposed ADP methods are not guaranteed
to result in policies that are interpretable.

Lastly, we note that some methods in finance for pricing options with early exercise involve tree
representations; examples include the binomial lattice approach (Cox et al. 1979) and the random
tree method (Broadie and Glasserman 1997). However, the trees found in these methods represent
discretizations of the sample paths of the underlying asset prices, which provide a tractable way to
perform scenario analysis. In contrast, the trees in our paper represent policies, not sample paths.
As such, our approach is unrelated to this prior body of work.
Machine learning. Interpretability has been a goal of major interest in the machine learning
community, starting with the development of decision trees in the 1980s (Breiman et al. 1984,
Quinlan 1986, 1993). A stream of research has considered interpretable scoring rules for classifica-
tion and risk prediction; recent examples include Ustun and Rudin (2015, 2016) and Zeng et al.
(2017). Another stream of research considers the design of disjunctive rules and rule lists; recent
examples include Wang et al. (2015), Wang and Rudin (2015), Wang et al. (2017), Letham et al.
(2015), Angelino et al. (2017) and Lakkaraju et al. (2016).

The algorithm we will present is closest in spirit to classical tree algorithms like CART and ID3.
Our algorithm differs from these prior methods in that it is concerned with optimal stopping, which
is a stochastic control problem that involves making a decision over time, and is fundamentally
different from classification and regression. In particular, a key part of estimating a classification
or regression tree is determining the leaf labels, which in general is a computationally simple task.
As we will see in Section 3.5, the analogous problem in the optimal stopping realm is NP-Hard.
As a result, this leads to some important differences in how the tree construction must be done to
account for the temporal nature of the problem; we comment on these in more detail in Section 4.3.
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Interpretable decision making. In the operations research community, there is growing interest
in interpretability as it pertains to dynamic decision making; we provide some recent examples
here. With regard to dynamic problems, Bertsimas et al. (2013) considers the problem of designing
a dynamic allocation policy for allocating deceased donor kidneys to patients requiring a kidney
transplant that maximizes efficiency while respecting certain fairness constraints. To obtain a pol-
icy that is sufficiently interpretable to policy makers, Bertsimas et al. (2013) further propose using
ordinary least squares regression to find a scoring rule that predicts the fairness-adjusted match
quality as a function of patient and donor characteristics. In more recent work, Azizi et al. (2018)
consider a related approach for dynamically allocating housing resources to homeless youth. The
paper proposes a general mixed-integer optimization framework for selecting an interpretable scor-
ing rule (specifically, linear scoring rules, decision tree rules with axis-aligned or oblique splits,
or combinations of both linear and decision tree rules) for prioritizing youth on the waiting list.
Lastly, the paper of Bravo and Shaposhnik (2017) considers the use of machine learning for ana-
lyzing optimal policies to MDPs. The key idea of the paper is to solve instances of a given MDP
to optimality, and then to use the optimal policies as inputs to machine learning methods. The
paper applies this methodology to classical problems such as inventory replenishment, admission
control and multi-armed bandits. This approach differs from ours, in that we do not have access
to the optimal policy; in fact, the goal of our method is to directly obtain a near-optimal policy.

3. Problem definition
We begin by defining the optimal stopping problem in Section 3.1, and its sample-based counterpart
in Section 3.2. We then define the tree policy sample-average approximation (SAA) problem, where
the class of policies is restricted to those that can be represented by a binary tree, in Section 3.3.
We show that the tree policy SAA problem converges in Section 3.4. Finally, in Section 3.5, we show
that the tree policy SAA problem is NP-Hard when one considers three specific simplifications.

3.1. Optimal stopping model
Consider a system with state given by x = (x1, . . . , xn) ∈ X1 × · · · × Xn , X ⊆ Rn. We let x(t)
denote the state of the system at time t, which evolves according to some stochastic process. We
let A= {stop,go} denote the action space of the problem; we may either stop the system (stop)
or allow it to continue for one more time step (go). We assume a finite horizon problem with T
periods, starting at period t = 1. We let g(t,x) denote the reward or payoff from stopping the
system when the current period is t and the current system state is x. We assume that all rewards
are discounted by a factor of β for each period.

We define a policy π as a mapping from the state space X to the action space A. We let Π =
{π |π : [T ]×X →A} be the set of all possible policies, where we use the notation [N ] = {1, . . . ,N}
for any integer N . For a given realization of the process {x(t)}Tt=1, we define the stopping time τπ
as the first time at which the policy π prescribes the action stop:

τπ = min{t∈ [T ] |π(t,x(t)) = stop}, (1)

where we take the minimum to be +∞ if the set is empty. Our goal is to find the policy that
maximizes the expected discounted reward over the finite horizon, which can be represented as the
following optimization problem:

maximize
π∈Π

E
[
βτπ−1 · g(τπ,x(τπ)) | x(1) = x

]
. (2)

For any policy π, we let Jπ(x), E [βτπ−1 · g(τπ,x(τπ)) | x(1) = x]. For simplicity, we assume that
there exists a starting state x̄ at which the system is started, such that x(1) = x̄ always.
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3.2. Sample average approximation
In order to solve problem (2), we need to have a full specification of the stochastic process {x(t)}Tt=1.
In practice, we may not have this specification or it may be too difficult to work with directly.
Instead of this specification, we may instead have data, that is, we may have access to specific
realizations or trajectories of the process {x(t)}Tt=1. In this section, we describe a sample-average
approximation (SAA) formulation of the optimal stopping problem (2) that will allow us to design
a policy directly from these trajectories, as opposed to a probabilistic definition of the stochastic
process.

We will assume that we have a set of Ω ∈ N+ trajectories, indexed by ω ∈ [Ω]. We denote the
state of the system in trajectory ω at time t by x(ω, t). Thus, each trajectory ω corresponds to a
sequence of system states x(ω,1),x(ω,2), . . . ,x(ω,T ), with x(ω,1) = x̄.

We can now define a sample-average approximation (SAA) version of the optimal stopping
problem (2). Let τπ,ω denote the time at which the given policy π recommends that the system be
stopped in the trajectory ω; mathematically, it is defined as

τπ,ω = min{t∈ [T ] |π(t,x(ω, t)) = stop}, (3)

where we again take the minimum to be +∞ if the set is empty. Our SAA optimal stopping problem
can now be written as

maximize
π∈Π

1

Ω

Ω∑
ω=1

βτπ,ω−1 · g(τπ,ω,x(ω, τπ,ω)). (4)

Note that, in order to handle the case when π does not stop on a given trajectory, we define βτπ,ω−1

to be 0 if τπ,ω = +∞. Lastly, we introduce the following short-hand notation for the sample average
value of a policy π:

Ĵπ(x̄),
1

Ω

Ω∑
ω=1

βτπ,ω−1 · g(τπ,ω,x(ω, τπ,ω)).

3.3. Tree policies
Problem (4) defines an approximation of the original problem (2) that uses data – specifically, a
finite sample of trajectories of the stochastic process {x(t)}Tt=1. However, despite this simplification
that brings the problem closer to being solvable in practice, problem (4) is still difficult because it
is an optimization problem over the set of all possible stopping policies Π. Moreover, as discussed
in Section 1, we wish to restrict ourselves to policies that are sufficiently simple and interpretable.

In this section, we will define the class of tree policies. A tree policy is specified by a binary tree
that corresponds to a recursive partitioning of the state space X . Each tree consists of two types
of nodes: split nodes and leaf nodes. Each split node is associated with a query of the form xi ≤ θ;
we call the state variable xi that participates in the query the split variable, the index i the split
variable index and the constant value θ in the inequality the split point. If the query is true, we
proceed to the left child of the current split node; otherwise, if it is false, we proceed to the right
child.

We let N denote the set of all nodes (splits and leaves) in the tree. We use splits to denote
the set of split nodes and leaves to denote the set of leaf nodes. We define the functions
leftchild : splits→N and rightchild : splits→N to indicate the left and right child nodes of
each split node, i.e., for a given split node s, leftchild(s) is its left child and rightchild(s) is
its right child. We use T to denote the topology of the tree, which we define as the tuple T =
(N , leaves, splits, leftchild,rightchild).

Given the topology T , we use v = {v(s)}s∈splits and θ = {θ(s)}s∈splits to denote the collection
of all split variable indices and split points, respectively, where v(s) is the split variable index and
θ(s) is the split point of split s. We let a = {a(`)}`∈leaves denote the collection of leaf actions, where
a(`)∈A is the action we take if the current state is mapped to leaf `. A complete tree is therefore
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x3 ≤ 2.5

x1 ≤ 0.9

go stop

x2 ≤ 1.5

go stop

yes no

(a) Tree policy.

1

2

4 5

3

6 7

yes no

(b) Node indices for tree topology. (Num-
bers indicate index of node in N .)

Figure 1 Visualization of tree policy in Example 1, for X = R3.

specified by the tuple (T ,v,θ,a), which specifies the tree topology, the split variable indices, the
split points and the leaf actions.

Given a complete tree (T ,v,θ,a), we let `(x;T ,v,θ) denote the leaf in leaves that the system
state x∈X is mapped to, and define the stopping policy π(·;T ,v,θ,a) by taking the action of the
leaf to which x is mapped:

π(x;T ,v,θ,a) = a( `(x;T ,v,θ) ).

We provide an example of a tree policy below.
Example 1. Consider a system where X =R3, for which the policy is the tree given in Figure 1a.

In this example, suppose that we number the nodes with the numbers 1 through 7, from top to
bottom, left to right. Then,N = {1, . . . ,6}, leaves = {4,5,6,7} and splits = {1,2,3}. The leftchild
and rightchild mappings are:

leftchild(1) = 2, rightchild(1) = 3,

leftchild(2) = 4, rightchild(2) = 5,

leftchild(3) = 6, rightchild(3) = 7.

The topology with the split and leaf labels is visualized in Figure 1b.
The split variable indices and split points for the split nodes {1,2,3} are

v(1) = 3, θ(1) = 2.5,

v(2) = 1, θ(2) = 0.9,

v(3) = 2, θ(3) = 1.5;

and the leaf actions for the leaf nodes {4,5,6,7} are

a(4) = go, a(6) = go,

a(5) = stop, a(7) = stop.

As an example, suppose that the current state of the system is x = (1.2,0.8,2.2). To map this
observation to an action, we start at the root and check the first query, x3 ≤ 2.5. Since x3 = 2.2,
the query is true, and we proceed to the left child of the root node. This new node is again a split,
so we check its query, x1 ≤ 0.9. Since x1 = 1.2, this query is false, so we proceed to its right child
node, which is a leaf. The action of this leaf is stop, and thus our policy stops the system. �
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Letting Πtree denote the set of all tree policies specified as above, we wish to find the tree policy
that optimizes the sample-average reward:

maximize
π∈Πtree

1

Ω

Ω∑
ω=1

βτπ,ω−1 · g(τπ,ω,x(ω, τπ,ω)). (5)

We refer to this problem as the tree policy SAA problem. In addition, we also define the counterpart
of problem (2) restricted to policies in Πtree, which we refer to simply as the tree policy problem:

maximize
π∈Πtree

E
[
βτπ−1 · g(τπ,x(τπ)) | x(1) = x

]
, (6)

where τπ is defined as in Section 3.1.
We comment on two aspects of this modeling approach. First, the class of tree policies, as defined

above, are stationary: the policy’s behavior does not change with the period t. This turns out to
not be a limitation, because it is always possible to augment the state space with an additional
state variable to represent the current period t. By then allowing the tree to split on t, it is possible
to obtain a time-dependent policy. We will follow this approach in our numerical experiments with
option pricing in Section 5 and the stylized one-dimensional problem in Section 6.

Second, our approach requires access to trajectories that are complete, that is, the trajectories
are not terminated early/censored by the application of some prior policy, and the system state
is known at every t ∈ [T ]. In the case of censored trajectories, our methodology can potentially
be applied by first fitting a stochastic model to the available trajectories and then simulating the
model to fill in the missing data. The extension of our methodology to censored trajectories is
beyond the scope of this paper, and left to future research.

3.4. Convergence of tree policy SAA problem
A natural expectation for the SAA problem (5) is that its objective approaches the optimal value
of (6), as the number of trajectories Ω available as samples increases. In this section, we show that
this is indeed a property of our SAA problem. More precisely, we show that in the limit of Ω→∞
and if we restrict the policy class Πtree to only trees of arbitrary bounded depth, the optimal value
of the SAA problem converges to the value of the optimal tree-based policy for the true problem
almost surely.

We note that establishing such a convergence result in the case of tree-based policies is challenging
due to two difficulties. First, a tree policy is defined by a tuple (T ,v,θ,a); the space of such
tuples could in general be uncountable, and thus we cannot directly invoke the strong law of
large numbers to guarantee that almost sure convergence holds simultaneously over all π ∈Πtree.
Secondly, invoking the strong law of large numbers over all members of a finite cover of this space
is also non-trivial. This is due to the fact that Ĵπ(x̄) is not necessarily continuous in π, even as we
change the split points θ and keep all other tree parameters constant, and as such we cannot rely
on Lipschitz continuity arguments.

In order to handle these challenges, we restrict our convergence analysis to the class of tree
policies corresponding to trees of depth at most d for some finite parameter d. We denote this class
of tree policies by Πtree(d)⊆Πtree. This restriction limits the set of (T ,v,a) parameters specifying
a tree-based policy to be finite, although the θ parameters still lie in a potentially uncountable
set. We remark that, because our focus is on interpretable policies, limiting the potential depth of
allowable trees that our SAA approach can optimize over is reasonable.

We also make some relatively mild assumptions regarding the underlying structure of the optimal
stopping problem, which facilitate the subsequent analysis. The first two are relatively standard,
enforcing the compactness of the state space X , as well as placing a universal upper bound on the
magnitude of the cost function g(·, ·):

Assumption 1. The state space X is compact.
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Assumption 2. There exists a constant G such that for any t∈ [T ], x∈X , 0≤ g(t,x)≤G.

The third assumption essentially imposes that the distributions of the marginals of the state
variable are sufficiently smooth. In particular, we assume that the probability that the v-th com-
ponent of the state variable, xv, lies in some interval [a, b] can be bounded by a function which
only depends on |b− a|, but not on a and b specifically, and which can be controlled to go to zero
as the width of the interval [a, b] vanishes.

Assumption 3. There exists a function f : [0,∞)→ [0,1] such that,
1. Pr [xv(t)∈ [a, b]]≤ f(|b− a|), for every t∈ [T ], v ∈ [n], and any [a, b]⊆Xv with b > a.
2. f(0) = 0.
3. f is strictly increasing and continuous.

We add that Assumption 3 is satisfied by distributions with probability density functions that can
be uniformly upper bounded across their entire domain.

Having set up these assumptions, the following theorem proves almost sure convergence of Ĵπ(x̄)
to Jπ(x̄) over all policies π in Πtree(d).

Theorem 1. For any finite tree depth d, initial state x̄ and arbitrary ε > 0, almost surely, there
exists a finite sample size Ω0 such that for all Ω≥Ω0 and all tree policies π ∈Πtree(d),∣∣∣Jπ(x̄)− Ĵπ(x̄)

∣∣∣≤ ε.
Theorem 1 is the main technical result of this section and enables us to prove our desired

convergence of the SAA optimal objective. This is stated in the following corollary:

Corollary 1. For any finite tree depth d, initial state x̄ and arbitrary ε > 0, almost surely,
there exists a finite sample size Ω0 such that for all Ω≥Ω0,∣∣∣∣∣ sup

π∈Πtree(d)

Jπ(x̄)− sup
π∈Πtree(d)

Ĵπ(x̄)

∣∣∣∣∣≤ ε.
The corollary above shows that the decision maker indeed obtains via solving the sample average
problem (5), a policy whose value approximates with arbitrarily high precision the value of the best
tree-based policy for the true problem, as long as the decision maker has access to a sufficiently
large sample of state trajectories.

As the proofs of Theorem 1 and Corollary 1 are quite involved, we present them in Section
EC.1.1.

3.5. Complexity of tree policy SAA problem
Having established that the tree policy SAA problem converges to the exact tree policy optimization
problem, we now turn our attention to the computational complexity of solving the tree policy
SAA problem. In this section, we will consider three simplified versions of problem (5) and show
that each of these is theoretically intractable.

To motivate the first of our intractability results, observe that problem (5) allows for the tree
policy to be optimized along all four dimensions: the topology T , the split variable indices v, the
split points θ and the leaf actions a. Rather than optimizing over all four variables, let us consider
instead a simplified version of problem (5), where the topology T , split variable indices v and split
points θ are fixed, and the leaf actions a are the only decision variables. We use Π(T ,v,θ) to
denote the set of all policies with the given T , v and θ, i.e.,

Π(T ,v,θ) = {π(·;T ,v,θ,a) |a∈ {stop,go}leaves}. (7)
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The leaf action SAA problem is to find the policy in Π(T ,v,θ) that optimizes the sample average
reward:

maximize
π∈Π(T ,v,θ)

1

Ω

Ω∑
ω=1

βτπ,ω−1 · g(τπ,ω,x(ω, τπ,ω)). (8)

While problem (5) is difficult to analyze in generality, the simpler problem (8) is more amenable to
analysis. It turns out, perhaps surprisingly, that this simplified problem is already hard to solve:

Proposition 1. The leaf action problem (8) is NP-Hard.

The proof of this result (see Section EC.1.2.1) follows by a reduction from the minimum vertex
cover problem.

This result is significant for two reasons. First, it establishes that even in this extremely simplified
case, where we have already selected a tree topology, split variable indices and split points, the
resulting problem is theoretically intractable.

Second, this result points to an important distinction between optimal stopping tree policies
and classification trees that are used in machine learning. For binary classification, a classification
tree consists of a tree topology, split variable indices, split points and leaf labels. Given T , v and
θ, determining the leaf labels a that minimize the 0-1 classification error on a training sample is
trivial: for each leaf, we simply predict the class that is most frequent among those observations
that are mapped to that leaf. More importantly, each leaf’s label can be computed independently.
The same holds true for the regression setting, where a(`) is the continuous prediction of leaf `: to
find the values of a that minimize the squared prediction error, we can set each a(`) as the average
of the dependent variable for all training observations that are mapped to that leaf.

For optimal stopping, the situation is strikingly different. Determining the leaf actions is much
more difficult because a single trajectory has a time dimension: as time progresses, a tree policy
may map the current state of that trajectory to many different leaves in the tree. As a result,
the decision of whether to stop or not in one leaf (i.e., to set a(`) = stop for a leaf `) cannot be
made independently of the decisions to stop or not in the other leaves: the leaf actions are coupled
together. For example, if we set a(`) = stop for a given leaf ` and a(`′) = stop for a different leaf
`′, then a trajectory that reaches ` before it reaches `′ could never stop at `′: thus, whether we
choose to stop at `′ depends on whether we choose to stop at `.

Proposition 1 establishes that when the topology, split variable indices and split points are fixed,
optimizing over the leaf actions is an intractable problem. It turns out that optimizing individually
over the split variable indices and the split points, with the rest of the tree policy parameters fixed,
is also intractable. Let Π(T ,θ,a) denote the set of all tree policies with the given T , θ and a (i.e.,
the split variable indices v may be optimized over), and let Π(T ,v,a) denote the set of all tree
policies with the given T , v and a (i.e., the split points θ may be optimized over):

Π(T ,θ,a) = {π(·;T ,v,θ,a) |v ∈ [n]splits}, (9)

Π(T ,v,a) = {π(·;T ,v,θ,a) |θ ∈Rsplits}. (10)

Let us define the split variable index SAA problem as the problem of finding a policy in Π(T ,θ,a)
to maximize the sample-based reward:

maximize
π∈Π(T ,θ,a)

1

Ω

Ω∑
ω=1

βτπ,ω−1 · g(τπ,ω,x(ω, τπ,ω)). (11)

Similarly, let us define the split point SAA problem as the analogous problem of optimizing over
policies in Π(T ,v,a):

maximize
π∈Π(T ,v,a)

1

Ω

Ω∑
ω=1

βτπ,ω−1 · g(τπ,ω,x(ω, τπ,ω)). (12)

We then have the following two intractability results.
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Figure 2 Example of evolution of tree with each iteration of construction procedure (Algorithm 1).

Proposition 2. The split variable index SAA problem (11) is NP-Hard.

Proposition 3. The split point SAA problem (12) is NP-Hard.

Like Proposition 1, the proofs of Propositions 2 and 3, found in Sections EC.1.2.2 and EC.1.2.3
respectively, also follow by a reduction from the minimum vertex cover problem.

4. Construction algorithm
As we saw in Section 3.3, three major simplifications of our SAA problem are theoretically
intractable. Expanding the scope of the problem to allow for joint optimization over the split points,
split variable indices and leaf actions, as well as the topology, renders the problem even more
difficult. Given the difficulty of this problem, we now present a practical heuristic algorithm for
approximately solving the SAA problem. Our algorithm is a greedy procedure that grows/induces
the tree from the top down. In Section 4.1, we provide a description of the overall algorithm. In Sec-
tion 4.2, we provide a procedure for performing the key step of our construction algorithm, which
is finding the optimal split point. Finally, in Section 4.3, we compare our construction algorithm
and extant classification tree approaches such as CART (Breiman et al. 1984).

4.1. Algorithm description
Our algorithm to heuristically solve (5) is a construction procedure where we greedily grow a tree
up to the point where we no longer observe an improvement by adding another split point. At a
high level, our algorithm works as follows. We start from a degenerate tree, consisting of a single
leaf with the action of go as the root node. At this leaf, we consider placing a split. Such a split will
result in a left child and a right child, with both child nodes being leaves. For each potential split
variable, we find the best possible split point assuming that the left child leaf will be stop (and
the right child will be go), and assuming that the right child leaf will be stop (and the left child
will be go). We find the best possible combination of the split variable, split point and direction
(left child is stop and right child is go, or right child is stop and left child is go), and add the
split to the tree. We continue the procedure if the split resulted in a sufficient improvement on the
current objective; otherwise, we terminate the procedure.

In the next iteration, we repeat the process, except that now we also optimize over the leaf that
we select to split: we compute the best possible split at each leaf in the current tree, and take the
best split at the best leaf. We continue in this way until there is no longer sufficient improvement
in an iteration. At each iteration, we expand the tree at a single leaf and add two new leaves to
the tree. Figure 2 provides a visualization of several iterations of the algorithm.

The notion of sufficient improvement that we use in our algorithm is that of relative improvement.
Specifically, if Z ′ is the objective value with the best split and Z is the current objective, then
we continue running the algorithm if Z ′ ≥ (1 + γ)Z, where γ ≥ 0 is a user-specified tolerance on
the relative improvement; otherwise, if the relative improvement is lower than γ, the algorithm is
terminated. Lower values of γ correspond to trees that are deeper with a larger number of nodes.
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Our construction algorithm is defined formally as Algorithm 1. The tree policy is initialized to
the degenerate policy described above, which prescribes the action go at all states. Each iteration
of the loop first computes the objective attained from choosing the best split point at each leaf
` with each variable v assuming that either the left child leaf will be a stop action or the right
child leaf will be a stop action. In the former case, we call the subtree rooted at node ` a left-stop
subtree, and in the latter case, we call it a right-stop subtree; Figure 3 shows both of these subtrees.
Then, if the best such split achieves an objective greater than the current objective value, we grow
the tree in accordance to that split: we add two child nodes to the leaf `∗ using the GrowTree
function, which is defined formally as Algorithm 2; we set the actions of those leaves according
to D∗; we set the split variable index of the new split as v∗; and finally, we set the split point as
θ∗`∗,v∗,D∗ . The existsImprovement flag is used to terminate the algorithm when it is no longer
possible to improve on the objective of the current tree by at least a factor of γ.

Algorithm 1 Tree construction algorithm.

Require: User-specified parameter γ (relative improvement tolerance)
Initialization:
T ← ({1},{1},∅, leftchild,rightchild), v←∅, θ←∅, a(1)← go
Z← 0
existsImprovement← true

while existsImprovement do
for `∈ leaves, v ∈ [n], D ∈ {left, right} do
Z∗`,v,D, θ

∗
`,v,D←OptimizeSplitPoint(`, v,D;T ,v,θ,a)

end for

existsImprovement← I
[
max`,v,DZ

∗
`,v,D ≥ (1 + γ)Z

]
if max`,v,DZ

∗
`,v,D >Z then

(`∗, v∗,D∗)← arg max`,v,DZ
∗
`,v,D

GrowTree(T , `∗)
v(`∗)← v∗

θ(`∗)← θ∗`∗,v∗,D∗

if D∗ = left then
a(leftchild(`∗))← stop, a(rightchild(`∗))← go

else
a(leftchild(`∗))← go, a(rightchild(`∗))← stop

end if
Z←Z∗`∗,v∗,D∗

end if
end while
return Tree policy (T ,v,θ,a).

We comment on three important aspects of Algorithm 1. The first aspect is the determination
of the optimal split point for a given leaf, a given split variable index and the direction of the stop
action (left/right). At present, this optimization is encapsulated in the function OptimizeSplit-
Point to aid in the exposition of the overall algorithm; we defer the description of this procedure
to the next section (Section 4.2).

The second aspect is the assumption of how the child actions are set when we split a leaf. At
present, we consider two possibilities: the left child is stop and the right child is go (this corresponds
to D∗ = left) or the left child is go and the right child is stop (this corresponds to D∗ = right).
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Figure 3 Visualization of the two different types of subtrees that can be used to split a leaf in the construction

algorithm.

Algorithm 2 GrowTree function.

Require: Tree topology T = (N , leaves, splits, leftchild,rightchild); target leaf `.
N ←N ∪{|N |+ 1, |N |+ 2}
leaves← (leaves \ {`})∪{|N |+ 1, |N |+ 2}
splits← splits∪{`}
leftchild(`) = |N |+ 1
rightchild(`) = |N |+ 2

These are not the only two possibilities, as we can also consider setting both child nodes to go or to
stop. We do not explicitly consider these. First, one of these will result in exactly the same behavior
as the current tree (for example, if a(`∗) = go in the current tree and we set a(leftchild(`∗)) =
a(rightchild(`∗)) = go in the new tree, the new tree policy will prescribe the same actions as
the current tree), and thus cannot result in an improvement. Second, OptimizeSplitPoint can
potentially return a value of −∞ or +∞, effectively resulting in a degenerate split where we always
go to the left or to the right. It is straightforward to see that such a split is equivalent to setting
both child actions to go or stop.

The third aspect is complexity control. The algorithm in its current form stops building the tree
when it is no longer possible to improve the objective value by a factor of at least γ. The parameter
γ plays an important role in controlling the complexity of the tree: if γ is set to a very low value,
the algorithm may produce deep trees with a large number of nodes, which is undesirable because
(1) the resulting tree may lack interpretability and (2) the resulting tree may not generalize well to
new data. In contrast, higher values of γ will cause the algorithm to terminate earlier with smaller
trees whose training set performance will be closer to their out-of-sample performance; however,
these trees may not be sufficiently complex to lead to good performance. The appropriate value of
γ can be calibrated through standard techniques like k-fold cross-validation.

4.2. Finding the optimal split point
The key part of Algorithm 1 is the OptimizeSplitPoint function, which aims to answer the
following question: what split point θ should we choose for the split at node ` on variable v so as
to maximize the sample-based reward? At first glance, this question appears challenging because
we could choose any real number to be θ, and it is not clear how we can easily optimize over θ.
Fortunately, it will turn out that the sample average reward of the new tree will be a piecewise-
constant function of θ, which we will be able to optimize over easily. The piecewise-constant function
is obtained by taking a weighted combination of a collection of trajectory-specific piecewise-constant
functions. These trajectory-specific piecewise-constant functions can be computed by carefully
analyzing how the variable v changes along each trajectory.

Assume that the split variable index v, the leaf ` and the subtree direction D are fixed. Our first
step is to determine the behavior of the trajectories with respect to the leaf `. For each trajectory,
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we first find the time at which each trajectory is stopped at a leaf different from `. We call this
the no-stop time. We denote it with τ−`,ω and define it as

τ−`,ω = min{t∈ [T ] | `(x(ω, t)) 6= ` and a(`(x(ω, t)) = stop}, (13)

where we use the notation [N ] to denote the set {1, . . . ,N} for an integer N , and we define the
minimum to be +∞ if the set is empty. We can effectively think of this as the time at which
trajectory ω will stop if the new split that we place at ` does not result in the trajectory being
stopped or equivalently, if we were to set the action of leaf ` to go. We define the no-stop value,
fω,ns, as the reward we garner if we allow the trajectory to stop at the no-stop time:

fω,ns =

{
g(ω, τ−`,ω) if τ−`,ω <+∞,
0 otherwise.

(14)

Note that the value is zero if the trajectory is never stopped outside of leaf `. Lastly, we also
determine the set of periods Sω when the policy maps the system state to the leaf `. We call these
the in-leaf periods, and define the set as

Sω = {t∈ [T ] | `(x(ω, t)) = ` and t < τ−`,ω}. (15)

The second step is to determine the permissible stop periods. Depending on whether we are
optimizing for the left-stop subtree or for the right-stop subtree, these are the periods at which the
subtree could stop. The right-stop permissible stop periods are defined as

Pω = {t∈ Sω | xv(ω, t)>max{xv(ω, t′) | t′ ∈ Sω and t′ < t}} , (16)

where the maximum is defined as −∞ if the corresponding set is empty. The left-stop permissible
stop periods are similarly defined as

Pω = {t∈ Sω | xv(ω, t)<min{xv(ω, t′) | t′ ∈ Sω and t′ < t}} , (17)

where the minimum is defined as +∞ if the corresponding set is empty.
The third step is to construct the trajectory-specific piecewise-constant functions. Each such

piecewise constant function will tell us how the reward of a trajectory ω varies as a function of
θ. Let us order the times in Pω as Pω = {tω,1, tω,2, . . . , tω,|Pω |}, where tω,1 < tω,2 < · · ·< tω,|Pω |. We
use those times to define the corresponding breakpoints of our piecewise constant function; the ith
breakpoint, bω,i, is defined as

bω,i = xv(ω, tω,i).

The function value of the ith piece is given by fω,i, which is defined as the value if we stopped at
the ith permissible stop period:

fω,i = g(ω, tω,i).

For a right-stop subtree, the corresponding piecewise constant function is denoted by Fω, and it is
defined as follows:

Fω(θ) =



fω,1 if θ < bω,1,
fω,2 if bω,1 ≤ θ < bω,2,
fω,3 if bω,2 ≤ θ < bω,3,
...

...
fω,|Pω | if bω,|Pω |−1 ≤ θ < bω,|Pω |,
fω,ns if bω,|Pω |−1 ≥ θ.

(18)
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For a left-stop subtree, the piecewise constant function is defined similarly, as

Fω(θ) =



fω,1 if θ≥ bω,1,
fω,2 if bω,2 ≤ θ < bω,1,
fω,3 if bω,3 ≤ θ < bω,2,
...

...
fω,|Pω | if bω,|Pω | ≤ θ < bω,|Pω |−1,
fω,ns if θ < bω,|Pω |.

(19)

The function value Fω(θ) is exactly the reward that will be garnered from trajectory ω if we set
the split point to θ. By averaging these functions over ω, we obtain the function F , which returns
the average reward, over the whole training set of trajectories, that ensues from setting the split
point to θ:

F (θ) = (1/Ω)
Ω∑
ω=1

Fω(θ). (20)

We wish to find the value of θ that maximizes the function F , i.e.,

θ∗ ∈ arg max
θ∈R

F (θ).

Note that because each Fω(·) is a piecewise constant function of θ, the overall average F (·) will also
be a piecewise constant function of θ, and as a result there is no unique maximizer of F (·). This is
analogous to the situation faced in classification, where there is usually an interval of split points
that lie between the values of the given coordinate of two points. Let I = arg maxθ∈RF (θ) be the
interval on which F (·) is maximized. For convenience, consider the interior int(I) of this interval,
which will always be an interval of the form (−∞, b), (b, b′) or (b,∞) for some values b, b′ ∈R, with
b < b′. We can then set the split point as follows:

θ∗ =

−∞ if int(I) = (−∞, b) for some b∈R,
(b+ b′)/2 if int(I) = (b, b′) for some b, b′ ∈R, b < b′,
+∞ if int(I) = (b,+∞) for some b∈R.

(21)

In the case that I is a bounded interval, we set the split point to the midpoint of the interval. If
I is an unbounded interval, then there is no well-defined midpoint of the interval, and we set the
split point to be either +∞ or −∞.

We summarize the procedure formally as Algorithm 3, and illustrate it with an example.
Example 2. In this example, let us suppose that we are at the first iteration of the construction

algorithm, where the tree policy is simply a single leaf with the action go. We want to find the
optimal split point with respect to variable 1 for a split on this leaf, assuming that the subtree we
place will be a right-stop subtree.

To illustrate, we fix a single trajectory ω. Figure 4 shows the relevant data for this trajectory,
which are the values x1(ω, t) and the rewards g(ω, t). We assume that T = 18 for all trajectories.

Since we are at the first iteration, we obtain that for the root node `, the no-stop time is
τ−`,ω = +∞, because there are no other leaves in the tree, and thus we have that Sω = {1, . . . ,18},
i.e., every period is a valid in-leaf period for the root node. Observe also that the no-stop value
fω,ns = 0, because there is no other leaf in which the trajectory is stopped.

Having determined the in-leaf periods, we determine the set of permissible stop periods Pω. To
do this, since we are placing a right-stop subtree, we follow the computation in equation (16). The
left-hand side of Figure 5 shows the same data as in Figure 4, but with the permissible stop periods
indicated with red squares.

To intuitively understand the computation in equation (16), one can imagine a horizontal line,
superimposed on the top plot of Figure 4, that starts at −∞ and that slowly moves up towards +∞.
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Algorithm 3 OptimizeSplitPoint function.

Require: Coordinate v, leaf `, direction of subtree D, current tree policy (T ,v,θ,a).
for ω ∈ [Ω] do

Compute no-stop time τ−`,ω using equation (13).
Compute no-stop value fω,ns using equation (14).
Compute in-leaf periods Sω using equation (15).
if D= left then

Compute the permissible stop periods Pω for left-stop subtree using equation (17).
Order Pω as Pω = {tω,1, tω,2, . . . , tω,|Pω |}, where tω,1 < tω,2 < · · ·< tω,|Pω |.
Compute the trajectory function Fω(·) using equation (19).

else
Compute the permissible stop periods Pω for right-stop subtree using equation (16).
Order Pω as Pω = {tω,1, tω,2, . . . , tω,|Pω |}, where tω,1 < tω,2 < · · ·< tω,|Pω |.
Compute the trajectory function Fω(·) using equation (19).

end if
end for
Compute the sample average function F (·) using equation (20).
Compute the maximizer set I← arg maxθ∈RF (θ).
Compute θ∗ using equation (21).
return θ∗.
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Figure 4 Data for Example 2. The top plot shows coordinate 1 (x1) of a single trajectory ω, and the bottom
plot shows the corresponding reward (g).

The vertical height of this horizontal line is the split point θ. As we move this line, we track the
first period in time at which the trajectory exceeds this horizontal line: this is where the trajectory
would stop, if we fixed the split point to the height of that line. Notice that when we start, the
first period is t = 1. As soon as we exceed x1(ω,1) = 0.5, we will no longer stop at t = 1, but at
t= 2. As soon as our line goes above x1(ω,2), the new period at which we stop will be t= 3. Once
our line goes above x1(ω,3), we will stop at t= 11, as this is the earliest that the trajectory passes
above our line. We keep going in this way, until the line exceeds the value maxt x1(ω, t) and we
have determined all of the permissible stop periods.

To further elaborate on this process, notice that t = 1,2,3 are permissible stop periods, but
period t= 5 is not. In order to stop at t= 5, we would have to set the threshold θ to a value lower
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Figure 5 Process for creating the function Fω. The left-hand side shows x1(ω, t) and g(ω, t) with the permis-
sible stop periods indicated by red squares, while the right-hand side shows the function Fω(θ) that
corresponds to this trajectory.
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Figure 6 Process for creating the function F from F1, F2, F3. The left three graphs show the trajectory-specific
functions F1, F2, F3 while the right-most graph shows the overall sample average function F (θ), obtained
by averaging F1, F2, F3. On the plot of F , the blue piece of the function is the one on which F is
maximized; the midpoint of that interval is θ∗ = 2.75, which is used as the final split point.

than x1(ω,5) = 1.5, and t= 5 would have to be the first period at which the trajectory exceeds θ,
i.e., x1(ω,5)> θ. This is impossible with the trajectory of Figure 4. For this reason, the values of
x1 and g at t= 5 are not relevant in determining the reward garnered from the trajectory as θ is
varied.

The permissible stop periods Pω = {t1, t2, . . . , t|Pω |} allow us to define the breakpoints
bω,1, . . . , bω,|Pω | and the values fω,1, . . . , fω,|Pω | and fω,ns of our piecewise constant function. The
corresponding piecewise constant function is shown on the right-hand side of Figure 5. We then
repeat this construction for all of the trajectories in our training set, and average them to obtain
the overall function F (·). Figure 6 visualizes this averaging process, assuming that there are three
trajectories in total (i.e., Ω = 3), including the one trajectory displayed in Figures 4 and 5 (which
we denote by ω= 1).

After f1, f2, f3 are averaged, we determine arg maxθ∈RF (θ) to be [2.5,3). Since this is a bounded
interval, we take the midpoint of this interval, which is 2.75, to be our final split point θ∗.

4.3. Comparison to top-down tree induction for classification
We note that our algorithm is inspired by classical top-down classification tree induction algorithms
such as CART (Breiman et al. 1984), ID3 (Quinlan 1986) and C4.5 (Quinlan 1993). However, there
are a number of important differences, in both the problem and the algorithm. We have already
discussed in Section 3.3 that the problem of finding a stopping policy in the form of a tree is
structurally different than finding a classifier in the form of a tree – in particular, deciding leaf
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labels in a tree classifier is easy to do, whereas deciding leaf actions in a tree policy for a stopping
problem is an NP-Hard problem.

With regard to the algorithms themselves, there are several important differences. First, in our
algorithm, we directly optimize the in-sample reward as we construct the tree. This is in contrast
to how classification trees are built for classification, where typically it is not the classification error
that is directly minimized, but rather an impurity metric such as the Gini impurity (as in CART)
or the information gain/entropy (as in ID3 and C4.5). Second, in the classification tree setting,
each leaf can be treated independently; once we determine that we should no longer split a leaf
(e.g., because there is no more improvement in the impurity, or the number of points in the leaf is
too low), we never need to consider that leaf again. In our algorithm, we must consider every leaf
in each iteration, even if that leaf may not have resulted in improvement in the previous iteration;
this is because the actions we take in the leaves interact with each other and are not independent of
each other. Lastly, as mentioned earlier, determining the optimal split point is much more involved
than in the classification tree setting: in classification, the main step is to sort the observations in
a leaf by the split variable. In our optimal stopping setting, determining the split point is a more
involved calculation that takes into account when each trajectory is in a given leaf and how the
cumulative maximum/minimum of the values of a given split variable change with the time t.

5. Application to option pricing
In this section, we report on the performance of our method in an application drawn from option
pricing. We define the option pricing problem in Section 5.1. We compare our policies against
two benchmarks in terms of out-of-sample performance and computation time in Sections 5.2 and
5.3, respectively. In Section 5.4, we present our tree policies for this application and discuss their
structure. Finally, in Section 5.5, we evaluate our policies on instances calibrated with real S&P500
stock price data. Additional numerical results are provided in Section EC.2.

5.1. Problem definition
High-dimensional option pricing is one of the classical applications of optimal stopping, and there
is a wide body of literature devoted to developing good heuristic policies (see Glasserman 2013
for a comprehensive survey). In this section, we illustrate our tree-based method on a standard
family of option pricing problems from Desai et al. (2012b). We consider two benchmarks. Our
first benchmark is the least-squares Monte Carlo method from Longstaff and Schwartz (2001),
which is a commonly used method for option pricing. Our second benchmark is the pathwise
optimization (PO) method from Desai et al. (2012b), which was shown in that paper to yield
stronger exercise policies than the method of Longstaff and Schwartz. Both of these methods involve
building regression models that estimate the continuation value at each time t using a collection
of basis functions of the underlying state, and using them within a greedy policy.

In each problem, the option is a Bermudan max-call option, written on n underlying assets. The
stopping problem is defined over a period of 3 calendar years with T = 54 equally spaced exercise
opportunities. The price paths of the n assets are generated as a geometric Brownian motion with
drift equal to the annualized risk-free rate r= 5% and annualized volatility σ= 20%, starting at an
initial price p̄. The pairwise correlation ρij between different assets i 6= j is set to ρ̄= 0. (The strike
price for each option is set at K = 100. Each option has a knock-out barrier B = 170, meaning
that if any of the underlying stock prices exceeds B at some time t0, the option is “knocked out”
and the option value becomes 0 at all times t≥ t0. Time is discounted continuously at the risk-free
rate, which implies a discrete discount factor of β = exp(−0.05× 3/54) = 0.99723.

Our state variable is defined as x(t) = (t, p1(t), . . . , pn(t), y(t), g(t)), where t is the index of the
period; pj(t) is the price of asset j at exercise time t ∈ {1, . . . , T}; y(t) is a binary variable that is
0 or 1 to indicate whether the option has not been knocked out by time t, defined as

y(t) = I
{

max
1≤j≤n,1≤t′≤t

pj(t)<B

}
; (22)
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and g(t) is the payoff at time t, defined as

g(t) = max

{
0, max

1≤j≤n
pj(t)−K

}
· y(t). (23)

In our implementation of the tree optimization algorithm, we vary the subset of the state variables
that the tree model is allowed to use. We use time to denote t, prices to denote p1(t), . . . , pn(t),
payoff to denote g(t), and KOind to denote y(t). We set the relative improvement parameter γ to
0.005, requiring that we terminate the construction algorithm when the improvement in in-sample
objective becomes lower than 0.5%. We report on the sensitivity of our algorithm to the parameter
γ in Section EC.2.1.

In our implementation of the Longstaff-Schwartz (LS) algorithm, we vary the basis functions
that are used in the regression. We follow the same notation as for the tree optimization algorithm
in denoting different subsets of state variables; we additionally define the following sets of basis
functions:
• one: the constant function, 1.
• pricesKO: the knock-out (KO) adjusted prices defined as pi(t) · y(t) for 1≤ i≤ n.
• maxpriceKO and max2priceKO: the largest and second largest KO adjusted prices.
• prices2KO: the knock-out adjusted second-order price terms, defined as pi(t) · pj(t) · y(t) for

1≤ i≤ j ≤ n.
In our implementation of the PO algorithm, we also vary the basis functions, and follow the

same notation as for LS. We use 500 inner samples, as in Desai et al. (2012b).
We vary the number of stocks as n= 4,8,16 and the initial price of all assets as p̄= 90,100,110.

For each combination of n and p̄, we consider ten replications. In each replication, we generate
20,000 trajectories for training the methods and 100,000 trajectories for out-of-sample testing. All
replications were executed on the Amazon Elastic Compute Cloud (EC2) using a single instance of
type r4.4xlarge (Intel Xeon E5-2686 v4 processor with 16 virtual CPUs and 122 GB memory).
All methods were implemented in the Julia technical computing language, version 0.6.2 (Bezanson
et al. 2017). All linear optimization problems for the pathwise optimization method were formulated
using the JuMP package for Julia (Lubin and Dunning 2015, Dunning et al. 2017) and solved using
Gurobi 8.0 (Gurobi Optimization, Inc. 2018).

5.2. Out-of-sample performance
Table 1 shows the out-of-sample reward garnered by the LS and PO policies for different basis
function architectures and the tree policies for different subsets of the state variables, for different
values of the initial price p̄. The rewards are averaged over the ten replications, with standard
errors reported in parentheses. For ease of exposition, we focus only on the n = 8 assets, as the
results for n= 4 and n= 16 are qualitatively similar; for completeness, these results are provided
in Section EC.2.2. In addition, Section EC.2.3 provides additional results for when the common
correlation ρ̄ is not equal to zero.

From this table, it is important to recognize three key insights. First, for all three values of p̄, the
best tree policies – specifically, those tree policies that use the time and payoff state variables
– are able to outperform all of the LS and PO policies. Relative to the best LS policy for each p̄,
these improvements range from 2.04% (p̄= 110) to 3.02% (p̄= 90), which is substantial given the
context of this problem. Relative to the best PO policy for each p̄, the improvements range from
1.12% (p̄= 100) to 1.66% (p̄= 90), which is still a remarkable improvement.

Second, observe that this improvement is attained despite an experimental setup biased in favor
of LS and PO. In this experiment, the tree optimization algorithm was only allowed to construct
policies using subsets of the primitive state variables. In contrast, both the LS and the PO method
were tested with a richer set of basis function architectures that included knock-out adjusted
prices, highest and second-highest prices and second-order price terms. From this perspective, it
is significant that our tree policies could outperform the best LS policy and the best PO policy.
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Table 1 Comparison of out-of-sample performance between LSM, PO and tree policies for n= 8 assets, for
different initial prices p̄. In each column, the best performance is indicated in bold.

n Method State variables / Basis functions Initial Price
p̄= 90 p̄= 100 p̄= 110

8 LS one 33.82 (0.021) 38.70 (0.023) 43.13 (0.015)
8 LS prices 33.88 (0.019) 38.59 (0.023) 43.03 (0.014)
8 LS pricesKO 41.45 (0.027) 49.33 (0.017) 53.08 (0.009)
8 LS pricesKO, KOind 41.86 (0.021) 49.36 (0.020) 53.43 (0.012)
8 LS pricesKO, KOind, payoff 43.79 (0.022) 49.86 (0.013) 53.07 (0.009)

8 LS pricesKO, KOind, payoff, 43.83 (0.021) 49.86 (0.013) 53.07 (0.009)
maxpriceKO

8 LS pricesKO, KOind, payoff, 43.85 (0.022) 49.87 (0.012) 53.06 (0.008)
maxpriceKO, max2priceKO

8 LS pricesKO, payoff 44.06 (0.013) 49.61 (0.010) 52.65 (0.008)

8 LS pricesKO, prices2KO, 44.07 (0.013) 49.93 (0.010) 53.11 (0.010)
KOind, payoff

8 PO prices 40.94 (0.012) 44.84 (0.016) 47.48 (0.014)
8 PO pricesKO, KOind, payoff 44.01 (0.019) 50.71 (0.011) 53.82 (0.009)

8 PO pricesKO, KOind, payoff, 44.07 (0.017) 50.67 (0.011) 53.81 (0.011)
maxpriceKO, max2priceKO

8 PO pricesKO, prices2KO, 44.66 (0.018) 50.67 (0.010) 53.77 (0.008)
KOind, payoff

8 Tree payoff, time 45.40 (0.018) 51.28 (0.016) 54.52 (0.006)
8 Tree prices 35.86 (0.170) 43.42 (0.118) 46.95 (0.112)
8 Tree prices, payoff 39.13 (0.018) 48.37 (0.014) 53.61 (0.010)
8 Tree prices, time 38.21 (0.262) 40.21 (0.469) 42.69 (0.133)
8 Tree prices, time, payoff 45.40 (0.017) 51.28 (0.016) 54.51 (0.006)
8 Tree prices, time, payoff, KOind 45.40 (0.017) 51.28 (0.016) 54.51 (0.006)

This also highlights an advantage of our tree optimization algorithm, which is its nonparametric
nature: if the boundary between stop and go in the optimal policy is highly nonlinear with respect
to the state variables, then by estimating a tree policy one should (in theory) be able to closely
approximate this structure with enough splits. In contrast, the performance of LS and PO is highly
dependent on the basis functions used, and requires the DM to specify a basis function architecture.

Third, with regard to our tree policies specifically, we observe that policies that use time and
payoff perform the best. The time state variable is critical to the success of the tree policies
because the time horizon is finite: as such, a good policy should behave differently near the end of
the horizon from how it behaves at the start of the time horizon. The LS algorithm handles this
automatically because it regresses the continuation value from t= T − 1 to t= 1, so the resulting
policy is naturally time-dependent. The PO policy is obtained in a similar way, with the difference
that one regresses an upper bound from t= T −1 to t= 1, so the PO policy is also time-dependent.
Without time as an explicit state variable, our tree policies will estimate stationary policies, which
are unlikely to do well given the nature of the problem. Still, it is interesting to observe some
instances in our results where our time-independent policies outperform time-dependent ones from
LS (for example, compare tree policies with prices only to LS with prices or one). With regard to
payoff, we note that because the payoff g(t) is a function of the prices p1(t), . . . , pn(t), one should
in theory be able to replicate splits on payoff using a collection of splits on price; including
payoff explicitly helps the construction algorithm recognize such collections of splits through a
single split on the payoff variable.
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Table 2 Comparison of estimation time between Longstaff-Schwartz, pathwise optimization and tree policies
for n= 8 assets, for different initial prices p̄ and common correlation ρ̄= 0.

n Method State variables / Basis functions Initial Price
p̄= 90 p̄= 100 p̄= 110

8 LS one 1.2 (0.0) 1.2 (0.0) 1.2 (0.0)
8 LS prices 1.4 (0.0) 1.4 (0.0) 1.4 (0.0)
8 LS pricesKO 1.4 (0.1) 1.5 (0.1) 1.5 (0.1)
8 LS pricesKO, KOind 1.6 (0.1) 1.4 (0.1) 1.5 (0.1)
8 LS pricesKO, KOind, payoff 1.9 (0.2) 1.9 (0.1) 1.8 (0.1)
8 LS pricesKO, KOind, payoff, 2.5 (0.2) 2.4 (0.2) 2.4 (0.2)

maxpriceKO
8 LS pricesKO, KOind, payoff, 2.7 (0.2) 2.6 (0.3) 2.4 (0.2)

maxpriceKO, max2priceKO
8 LS pricesKO, payoff 1.7 (0.2) 1.6 (0.1) 1.4 (0.1)
8 LS pricesKO, prices2KO, KOind, payoff 5.5 (0.4) 4.4 (0.2) 4.5 (0.2)

8 PO prices 33.3 (0.7) 35.5 (0.7) 32.8 (0.7)
8 PO pricesKO, KOind, payoff 76.8 (2.8) 73.8 (5.0) 56.9 (2.1)
8 PO pricesKO, KOind, payoff, 104.7 (5.8) 79.6 (3.3) 66.8 (3.8)

maxpriceKO, max2priceKO
8 PO pricesKO, prices2KO, KOind, payoff 221.3 (9.4) 180.7 (4.1) 142.0 (4.2)

8 Tree payoff, time 7.6 (0.3) 3.9 (0.3) 3.2 (0.1)
8 Tree prices 124.7 (8.6) 125.5 (4.8) 125.0 (5.8)
8 Tree prices, payoff 5.5 (0.1) 5.3 (0.1) 5.1 (0.1)
8 Tree prices, time 158.8 (12.5) 101.0 (12.8) 51.1 (2.7)
8 Tree prices, time, payoff 20.4 (1.0) 10.9 (0.6) 9.3 (0.1)
8 Tree prices, time, payoff, KOind 21.5 (1.5) 11.2 (0.6) 9.3 (0.2)

5.3. Computation time
Table 2 reports the computation time for the LS, PO and tree policies for n = 8 and p̄ ∈
{90,100,110}, for the uncorrelated (ρ̄ = 0) case. The computation times are averaged over the
ten replications for each combination of n and p̄. As with the performance results, we focus on
n = 8 to simplify the exposition; additional timing results for n = 4 and n = 16 are provided in
Section EC.2.4. For LS, the computation time consists of only the time required to perform the
regressions from t= T − 1 to t= 1. For PO, the computation time consists of the time required to
formulate the linear optimization problem in JuMP, the solution time of this problem in Gurobi,
and the time required to perform the regressions from t= T −1 to t= 1 (as in Longstaff-Schwartz).
For the tree method, the computation consists of the time required to run Algorithm 1.

From this table, we can see that although our method requires more computation time than LS,
the times are in general quite modest: our method requires no more than 2.5 minutes on average
in the largest case. (In experiments with n = 16, reported in Section EC.2.4, we find that the
method requires no more than 5 minutes on average in the largest case.) The computation times
of our method also compare quite favorably to the computation times for the PO method. We also
remark here that our computation times for the PO method do not include the time required to
generate the inner paths and to pre-process them in order to formulate the PO linear optimization
problem. For n = 8, including this additional time increases the computation times by a large
amount, ranging from 540 seconds (using prices only; approximately 9 minutes) to 2654 seconds
(using pricesKO, prices2KO, KOind, payoff; approximately 44 minutes).

5.4. Policy structure
It is also interesting to examine the structure of the policies that emerge from our tree optimization
algorithm. Figure 7 shows trees obtained using prices, time, payoff and KOind for one repli-
cation with p̄= 90, for n= 4,8,16. This figure presents a number of important qualitative insights
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Figure 7 Examples of tree policies for initial price p̄= 90 with state variables prices, time, payoff and KOind for
a single replication.
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(c) n= 16.

about our algorithm. First, observe that the trees are extremely simple: there are no more than
seven splits in any of the trees. The policies themselves are easy to understand and sensible. Taking
n= 8 as an example, we see that if the payoff is lower than 51.06, it does not stop unless we are
in the last period (t= 54), because there is still a chance that the payoff will be higher by t= 54.
If the payoff is greater than 51.06 but less than or equal to 54.11, then the policy does not stop
unless we are in the last four periods (t= 51, 52, 53 or 54). If the payoff is greater than 54.11 but
less than or equal to 55.13, then we continue. Otherwise, if the payoff is greater than 55.13, then
we stop no matter what period we are in; this is likely because when such a payoff is observed, it
is large enough and far enough in the horizon that it is unlikely a larger reward will be realized
later. In general, as the payoff becomes larger, the policy will recommend stopping earlier in the
horizon. Interestingly, the policies do not include any splits on the prices and the KO indicator,
despite the construction algorithm being allowed to use these variables: this further underscores
the ability of the construction algorithm to produce simple policies. It is also interesting to note
that the tree structure is quite consistent across all three values of n. To the best of our knowledge,
we do not know of any prior work suggesting that simple policies as in Figure 7 can perform well
against mainstream ADP methods for high-dimensional option pricing.

We observe in the n= 4 and n= 8 trees that there is some redundancy in the splits. For example,
for n= 4, observe that the left subtree of the split g ≤ 42.32 is identical to the left subtree of the
split g≤ 49.86; thus, the policy will take the same action whether g ∈ [0,42.32] or g ∈ (42.32,49.86],
and the entire tree could be simplified by replacing it with the subtree rooted at the split g≤ 49.86.
The reason for this redundancy is due to the greedy nature of the construction procedure. At the
start of the construction procedure, splitting on g ≤ 42.32 leads to the best improvement in the
reward, but as this split and other splits are added, the split on g≤ 49.86 becomes more attractive.

In addition to this redundancy, we also note that in all three trees, there is an interval (g1, g2]
such that if g ∈ (g1, g2], the policy will continue (for example, in n= 8, this interval is (54.11,55.13]).
This property of the policies is suboptimal because if g is inside that interval, the policy may
choose to continue even if t= 54, leading to a reward of zero for that trajectory; thus, we could
in theory improve the performance of the policy by requiring the policy to stop if t = 54 (i.e.,
adding a right-stop subtree with the split t≤ 53.5). This may occur for two reasons: first, due to
the sample-based nature of the optimization algorithm, the number of training set trajectories that
are inside the interval (g1, g2] at t = 54 may be small enough that adding the split t ≤ 53.5 will
not improve the overall sample-based objective by a relative factor of more than 1 + γ = 1.005.
The second reason is that, even if the sample is sufficiently large, the split may still fail to offer a
sufficient improvement to the objective; this could be the case if the policy is such that there is a
very small probability that a trajectory makes it to t= 54 and that g(t) is in the interval (g1, g2]
at t= 54, so that taking the optimal action has a negligible impact on the objective.
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Finally, it is worth qualitatively comparing the policies that arise from our algorithm to policies
derived from LS or the PO method. The trees in Figure 7 fully specify the policy: the decision
to stop or go can be made by checking at most three logical conditions. Moreover, the trees in
Figure 7 directly tell us when the policy will stop: either when the reward is very high or when we
are in the final period of the horizon. In contrast, a policy derived from the LS or the PO method
will consist of regression coefficients for all basis functions for each t in the time horizon; we would
not consider this policy interpretable due to the high dimensionality of its specification, as well as
the fact that it does not drop, or clearly delineate, which basis functions are non-informative to
the policy. From such a specification, it is difficult to immediately understand what the behavior of
the policy will be (i.e., at what times and in what part of the state space the policy will stop), and
even more so when the basis functions are more complex (such as the second-order price terms).
We provide an example of a LS policy for n= 8 in Section EC.2.5 to further illustrate this.

5.5. Out-of-sample performance with S&P-500 data calibration
In the previous sections, we considered options with artificial parameters specifying the stock price
dynamics. In this section, we consider another set of experiments where the stock price dynamics
are calibrated using real data. We again consider a max-call option, where the initial price p̄ is
set to 100, the strike price K is set to 100 and the barrier price is set to 300. We assume that
payoffs are discounted at a continuous (annualized) interest rate r, for which we test values of 0.02,
0.05 and 0.10. We assume that the stock expires after 2 years, with 24 equally spaced exercise
opportunities per year, for a total of T = 48 exercise opportunities.

To calibrate the stock dynamics, we use daily prices of real stocks in the S&P500 in two periods:
the year 2017, and the period 2007–2017. We randomly sample 10 sets of n= 8 stocks from each
period, so as to ensure that price data is not missing for more than 10% of the days in the chosen
period. Using this data, we compute the daily log returns, and use the mvnmle package in R (Gross
2018) to estimate the drift and covariance of the corresponding geometric Brownian motion model.
For each of the ten sets of stocks in each of the two periods (2017 and 2007 – 2017) at each
interest rate r ∈ {0.02,0.05,0.10}, we use the estimated parameters to simulate ten replications of
20,000 trajectories for training and 100,000 trajectories for out-of-sample testing. This gives rise
to 10× 2× 3 = 60 different option pricing instances, which are replicated ten times.

We again compare our tree optimization approach against LS and PO. We test the same basis
function/state variable architectures as in Section 5.2. For simplicity, we report only the knock-
out adjusted first-order (pricesKO, payoff, KOInd) and second-order (pricesKO, prices2KO,
payoff, KOind) architectures for LS and PO, as these gave the best performance for these two
methods. For the tree policies, we report the performance of the largest state variable architecture
(prices, payoff, time, KOInd) as this architecture gave the best performance. (We remark that
as in the synthetic dynamics experiments, all tree policies using payoff and time as state variables
gave very similar results.)

Table 3 compares the three methods on the ten instances for each of the two periods for a single
interest rate (r = 0.05); the values shown are computed out-of-sample using the 100,000 test set
trajectories, and averaged over ten replications. (Additional results for r = 0.02 and r = 0.10, as
well as information on the stocks comprising the ten instances in each period, can be found in
Section EC.2.6.) From this table, we observe the same qualitative behavior as in our experiments
in Section 5.2, namely that our tree policies deliver performance that is competitive with and often
significantly better performance than the LS and PO policies. The purpose of this experiment
and the calibration procedure is to investigate how our method performs with more realistic and
complex dynamics than those in Section 5.2. Based on these results, our method has the potential
to deliver good performance for realistic dynamics as well as the simpler dynamics of Section 5.2.
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Period Instance LS - 1st. O. LS - 2nd O. PO - 1st. O. PO - 2nd O. Tree

2007 – 2017 1 93.09 (0.057) 95.67 (0.064) 88.27 (0.040) 97.19 (0.051) 98.70 (0.065)
2 95.26 (0.063) 97.82 (0.060) 90.31 (0.072) 99.33 (0.065) 100.84 (0.066)
3 98.77 (0.089) 102.23 (0.049) 94.02 (0.116) 103.66 (0.031) 105.43 (0.064)
4 81.92 (0.062) 84.37 (0.045) 77.56 (0.078) 85.66 (0.050) 86.71 (0.073)
5 93.88 (0.084) 96.51 (0.066) 88.93 (0.070) 97.86 (0.049) 98.39 (0.095)
6 95.96 (0.051) 98.88 (0.048) 89.50 (0.129) 100.53 (0.052) 102.43 (0.054)
7 78.70 (0.088) 80.98 (0.075) 73.72 (0.095) 82.22 (0.075) 83.27 (0.118)
8 96.21 (0.063) 98.33 (0.060) 92.33 (0.097) 99.59 (0.051) 100.82 (0.067)
9 83.04 (0.052) 85.48 (0.054) 76.95 (0.068) 86.69 (0.041) 87.11 (0.191)
10 86.10 (0.058) 88.42 (0.045) 80.77 (0.072) 89.69 (0.036) 90.33 (0.123)

2017 1 146.51 (0.065) 149.57 (0.039) 151.31 (0.035) 152.29 (0.034) 155.83 (0.072)
2 138.95 (0.060) 142.10 (0.035) 142.62 (0.082) 144.54 (0.024) 147.71 (0.232)
3 144.77 (0.051) 147.88 (0.029) 149.34 (0.043) 150.85 (0.025) 154.32 (0.181)
4 147.52 (0.045) 152.81 (0.034) 151.53 (0.028) 153.92 (0.028) 157.39 (0.036)
5 141.59 (0.047) 144.84 (0.044) 145.72 (0.038) 146.38 (0.042) 149.53 (0.034)
6 130.12 (0.080) 134.57 (0.044) 130.29 (0.072) 136.25 (0.039) 137.08 (0.245)
7 153.87 (0.049) 161.40 (0.030) 159.25 (0.038) 163.12 (0.030) 169.74 (0.028)
8 151.12 (0.025) 154.76 (0.031) 155.09 (0.023) 156.64 (0.021) 161.14 (0.050)
9 145.93 (0.057) 148.39 (0.038) 149.16 (0.044) 149.88 (0.034) 151.64 (0.063)
10 140.46 (0.034) 143.56 (0.030) 144.45 (0.028) 145.77 (0.027) 149.22 (0.194)

Table 3 Comparison of LS, PO and tree policies using realistically calibrated max-call option instances, with
interest rate r= 0.05. Values shown are averages over ten replications, with standard errors in parentheses; bold is
used to indicate the best method for each instance in each period. The terms “1st. O.” and “2nd. O.” indicate

the first-order basis function architecture (pricesKO, payoff, KOind) and the second-order basis function
architecture (pricesKO, prices2KO, payoff, KOind).

6. Application to one-dimensional uniform problem
In this section, we consider the following simple optimal stopping problem: we have a one-
dimensional stochastic process, x(1), x(2), . . . , x(T ), where at each time x(t) is independently drawn
from a continuous Uniform(0,1) distribution. The payoff at each t is given by g(t, x) = x and
rewards are discounted by a discount factor of β. The rationale for considering this problem is
its simplicity: it is small and simple enough that we can solve for the optimal policy directly, and
obtain insight from comparing the performance of our tree policies to this optimum.

We compare both our tree policies and Longstaff-Schwartz against the optimal policy. We run
the tree construction algorithm with payoff and time as state variables, and we run LS with the
constant basis function (1). For the construction algorithm we set γ = 0.005. Note that for LS, it
does not make sense to use x(t) as a predictor in the regression; this is because the state variable
x(t) is drawn independently at each time, and so the optimal continuation value does not vary with
the current x(t). For this reason, we only consider the basis function architecture consisting of 1.
We use 20,000 trajectories to build each model, and 100,000 to perform out-of-sample evaluation.
We test values of β in {0.9,0.95,0.97,0.98,0.99,0.995,0.999,0.9999,1.0}.

Figure 8 displays the tree policies for β = 0.9,0.95,0.99,1.0. From this figure we can see that for
β = 0.9 and β = 0.95, the tree policy does not depend on time: at any t, we simply check whether
the payoff g is greater than or equal to some threshold value. For β = 0.99 and β = 1.0, we stop
if either the payoff is greater than or equal to some threshold, or if we are in the last period. To
compare these against the LS and optimal policies, we also plot in Figure 9 the effective thresholds
used by the three policies from t= 1 to t= 54.

From these two figures, we can see that the optimal thresholds are time-dependent, as we would
expect, and the thresholds used by LS are essentially the same as those used by the optimal
policy. In contrast, the thresholds used by the tree policies are significantly less time-dependent
(for β = 0.9, the threshold is constant, while for β = 1.0, the threshold only changes at t= 54, and
is otherwise constant).

Given the large differences in the policy structure, one would expect that the tree policies would
be highly suboptimal. Surprisingly, however, this turns out not to be the case. To compare the
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Figure 8 Examples of tree policies for β = 0.9,0.95,0.99,1.0.
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Figure 9 Comparison of thresholds used by the three different policies at β = 0.9 and β = 1.0.

policies, we show the out-of-sample performance of the tree, LS and optimal policies in Table 4. At
low discount factors (β ≤ 0.99), both the tree and LS policies are essentially optimal. For β > 0.99,
LS displays a slight edge over the tree policies, and is essentially optimal; in the largest case, there
is a difference of about 0.013 between the tree policies and the LS/optimal policies.

β Tree LS Optimal (sim.) Optimal (true)

0.9 0.6962 0.6961 0.6961 0.6964
0.95 0.7622 0.7622 0.7622 0.7620
0.97 0.8043 0.8043 0.8043 0.8044
0.98 0.8342 0.8342 0.8342 0.8340
0.99 0.8762 0.8763 0.8763 0.8763
0.995 0.9078 0.9086 0.9086 0.9087
0.999 0.9427 0.9507 0.9507 0.9507
0.9999 0.9528 0.9647 0.9647 0.9648
1 0.9532 0.9665 0.9665 0.9666

Table 4 Comparison of tree, LS and optimal policies for the 1D uniform problem. With the exception of
“Optimal (true)” (the theoretical optimal reward for the problem), all values shown are out-of-sample rewards

averaged over 5 independent replications. All standard errors are smaller than 0.0005.
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This experiment provides several insights. First, even for a simple problem such as this one,
there may be near-optimal policies that are simpler than the optimal policy (for example, compare
the constant threshold policy for β = 0.9 to the time-dependent threshold policy that is optimal)
and that our construction algorithm can potentially discover such policies. Second, our approach
is not a free lunch; indeed, for the higher discount rates, LS is able to recover the optimal policy,
while our tree policies are suboptimal (albeit only by a small amount).

Lastly, we remark that in theory, the optimal policy for this problem could be represented as a
tree policy, where one would have a sequence of splits on t, and each such split would be followed by
a split on g. In this set of examples, our algorithm does not recover such a policy due to its greedy
nature. One question in this direction is how to recognize splits that do not immediately yield an
improvement in reward, but enable later splits that yield significant improvements. The answer to
this question is not obvious, especially in light of the structure of the optimal stopping problem
that is leveraged to efficiently optimize split points in our construction algorithm (Section 4), and
is an interesting direction for future research.

7. Conclusion
In this paper, we consider the problem of designing interpretable policies for optimal stopping,
based on binary trees. We formulate the problem as an SAA problem, which we show to be the-
oretically intractable. Thus motivated, we develop a heuristic algorithm that greedily constructs
a policy from the top down, by exploiting the stopping problem’s structure in finding the opti-
mal split point at each leaf. In numerical experiments on a standard option pricing problem, our
algorithm attains better performance than state-of-the-art ADP methods for option pricing, while
simultaneously producing policies that are significantly simpler and more transparent. We believe
that this represents an exciting starting point for future research at the intersection of stochastic
control and interpretable machine learning.
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e-companion to Ciocan and Mǐsić: Interpretable optimal stopping ec1

Proofs and Additional Numerical Results

EC.1. Proofs
EC.1.1. Proofs and additional lemmas for Section 3.4
In this section, we focus now on proving Theorem 1 and Corollary 1. Our proof relies on the fact
that, via the strong law of large numbers, Jπ(x̄)→ Ĵπ(x̄) almost surely for a fixed policy π. On
the other hand, Theorem 1 requires almost sure convergence to hold simultaneously for all policies
in Πtree(d), which is a possibly uncountable set. This implies that we cannot directly apply the
previous fact which applies only for a fixed policy; instead, we construct a more intricate argument.

First, we deal with the issue of the uncountability of Πtree(d), where each policy π in this space is
induced by a tuple (T ,v,θ,a) specifying a tree. Observe that since we have bounded the depth of
the tree by d, the space of tree topologies, split variable indices and leaf actions (T ,v,a) is finite,
although the space of split points θ remains uncountable. Thus, we need to prove that, fixing the
tuple (T ,v,a), we have almost sure convergence over all possible choice of split points θ ∈X .

In order to make the parametrization of a tree policy π in terms of the tree parameters explicit,
we use the notation π(·;T ,v,θ,a). When unambiguous, for readability we use πθ to denote the
tree policy π(·;T ,v,θ,a) and τθ to denote τπ(·;T ,v,θ,a), the stopping time induced by this policy.

Lemma EC.1. Under Assumptions 1, 2 and 3, for any fixed tree parameters (T ,v,a), starting
state x̄ and arbitrary ε > 0, almost surely, there exists finite Ω1 ∈N+ such that for all Ω≥Ω1 and
all split points θ ∈X , ∣∣∣Jπ(·;T ,v,θ,a)(x̄)− Ĵπ(·;T ,v,θ,a)(x̄)

∣∣∣≤ ε.
Proof. For some parameter δ > 0 which we will set later, let us pick a set Qδ = {θ1, . . . ,θK}

to be a δ-cover of X in the || · ||∞ norm. That is, for any θ ∈ X , there exists θ̃ ∈ Qδ such that
||θ − θ̃||∞ ≤ δ. The existence of such a cover is guaranteed by Assumption 1. For any θ ∈ X , we
then have∣∣∣Jπ(·;T ,v,θ,a)(x̄)− Ĵπ(·;T ,v,θ,a)(x̄)

∣∣∣= ∣∣∣Jπθ(x̄)− Ĵπθ(x̄)
∣∣∣

≤ |Jπθ(x̄)−Jπθ̃(x̄)|︸ ︷︷ ︸
(a)

+
∣∣∣Jπθ̃(x̄)− Ĵπθ̃(x̄)

∣∣∣︸ ︷︷ ︸
(b)

+
∣∣∣Ĵπθ̃(x̄)− Ĵπθ(x̄)

∣∣∣︸ ︷︷ ︸
(c)

,

for some θ̃ ∈Qδ. We now bound each of the three terms above. By Lemma EC.2 and using the fact
that |θs− θ̃s| ≤ δ due to Qδ being a δ-cover, (a) is upper bounded by

GT
∑

s∈splits

f(|θs− θ̃s|)≤GT |splits|f(δ).

For term (b), by the strong law of large numbers and using the fact that Qδ is finite, there exists

some Ωb ∈N+ such that for all Ω≥Ωb and any θ̃ ∈Qδ,
∣∣∣Jπθ̃(x̄)− Ĵπθ̃(x̄)

∣∣∣≤ ε/3 almost surely.

Finally, for (c), by Lemma EC.3,

∣∣∣Ĵπθ̃(x̄)− Ĵπθ(x̄)
∣∣∣≤ G

Ω

Ω∑
ω=1

∑
t∈[T ]

∑
s∈splits

I
{
xv(s)(ω, t)∈ [min

{
θs, θ̃s

}
,max

{
θs, θ̃s

}
]
}

≤ G

Ω

Ω∑
ω=1

∑
t∈[T ]

∑
s∈splits

I
{
xv(s)(ω, t)∈ [θ̃s− δ, θ̃s + δ]

}
.
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Furthermore, since Qδ is a finite set, we can again invoke the strong law of large numbers to show
that for some γ > 0 to be chosen later, there exists some Ωc such that for all Ω≥Ωc and all θ̃ ∈Qδ,

G

Ω

Ω∑
ω=1

∑
t∈[T ]

∑
s∈splits

I
{
xv(s)(ω, t)∈ [θ̃s− δ, θ̃s + δ]

}
≤G

∑
t∈[T ]

∑
s∈splits

Pr
[
xv(s) ∈ [θ̃s− δ, θ̃s + δ]

]
+ γ

≤GT |splits|f(2δ) + γ

where in the last inequality we have used Assumption 3. Thus, for all θ̃ ∈Qδ,∣∣∣Ĵπθ̃(x̄)− Ĵπθ(x̄)
∣∣∣≤GT |splits|f(2δ) + γ.

Setting γ = ε/6, and δ such that GT |splits|f(2δ) ≤ ε/6, which we can do by parts 2 and 3 of
Assumption 3, we obtain that GT |splits|f(2δ) + γ ≤ ε/3.

Putting everything together, we obtain that, almost surely, for any Ω≥max{Ωb,Ωc},∣∣∣Jπθ(x̄)− Ĵπθ(x̄)
∣∣∣≤ ε, for all θ ∈X . �

We now state and prove two lemmas which we have used in proving Lemma EC.1 above:

Lemma EC.2. Under Assumptions 2 and 3, for initial state x̄ and any fixed tree parameters
(T ,v,a) and θ1,θ2 ∈X ,∣∣Jπ(·;T ,v,θ1,a)(x̄)−Jπ(·;T ,v,θ2,a)(x̄)

∣∣≤GT ∑
s∈splits

f(|θ1,s− θ2,s|).

Proof. We construct an upper bound on the difference in values of the two policies defined by
θ1 and θ2. First, by Jensen’s inequality, we have,∣∣Jπ(·;T ,v,θ1,a)(x̄)−Jπ(·;T ,v,θ2,a)(x̄)

∣∣= |Jπθ1 (x̄)−Jπθ2 (x̄)|
=
∣∣E [βτθ1−1g(τθ1

,x(τθ1
))−βτθ2−1g(τθ2

,x(τθ2
))
]∣∣

≤E
[∣∣βτθ1−1g(τθ1

,x(τθ1
))−βτθ2−1g(τθ2

,x(τθ2
))
∣∣] .

We further bound the RHS of the last equation by conditioning on whether the stopping times of
the two policies induced by θ1 and θ2 agree:

E
[∣∣βτθ1−1g(τθ1

,x(τθ1
))−βτθ2−1g(τθ2

,x(τθ2
))
∣∣]

=E
[∣∣βτθ1−1g(τθ1

,x(τθ1
))−βτθ2−1g(τθ2

,x(τθ2
))
∣∣∣∣ τθ1

= τθ2

]
Pr [τθ1

= τθ2
]

+E
[∣∣βτθ1−1g(τθ1

,x(τθ1
))−βτθ2−1g(τθ2

,x(τθ2
))
∣∣∣∣ τθ1

6= τθ2

]
Pr [τθ1

6= τθ2
]

≤ 0 ·Pr [τθ1
= τθ2

] +G ·Pr [τθ1
6= τθ2

]

≤G ·Pr [∃t∈ [T ] s. t. πθ1
(t,x(t)) 6= πθ2

(t,x(t))]

≤G
∑
t∈[T ]

Pr [πθ1
(t,x(t)) 6= πθ2

(t,x(t))]

≤G
∑
t∈[T ]

Pr
[
∃s∈ splits s. t. xv(s)(t)∈ [min{θ1s, θ2s} ,max{θ1s, θ2s}]

]
≤G

∑
t∈[T ]

∑
s∈splits

Pr
[
xv(s)(t)∈ [min{θ1s, θ2s} ,max{θ1s, θ2s}]

]
≤GT

∑
s∈splits

f(|θ1s− θ2s|),
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where in the first inequality, we have used Assumption 2, which guarantees that the difference in
values of πθ1 and πθ2 cannot be larger than G; in the second, the fact that the stopping times being
different implies that πθ1

and πθ2
differ in their action at some t ∈ [T ]; in the third and fifth, a

union bound over times and splits, respectively; in the fourth, the fact that πθ1
and πθ2

disagreeing
at t implies that there is some split at which the policies disagree (i.e., the split variable is mapped
to different child nodes in the two policies); and in the last, Assumption 3. �

Lemma EC.3. Under Assumption 2, for starting state x̄ and any fixed tree parameters (T ,v,a)
and θ1,θ2 ∈X ,∣∣∣Ĵπ(·;T ,v,θ1,a)(x̄)− Ĵπ(·;T ,v,θ2,a)(x̄)

∣∣∣
≤ G

Ω

Ω∑
ω=1

∑
t∈[T ]

∑
s∈splits

[
I
{
xv(s) ∈ [min{θ1s, θ2s} ,max{θ1s, θ2s}]

}]
.

Proof. Similarly to the argument for Lemma EC.2,∣∣∣Ĵπ(·;T0,v0,θ1,a0)(x̄)− Ĵπ(·;T0,v0,θ2,a0)(x̄)
∣∣∣

=

∣∣∣∣∣ 1

Ω

Ω∑
ω=1

[
βτθ1,ω−1g(τθ1,ω,x(τθ1,ω))− 1

Ω

Ω∑
ω=1

βτθ2,ω−1g(τθ2,ω,x(τθ2,ω))

]∣∣∣∣∣
≤ 1

Ω

Ω∑
ω=1

∣∣βτθ1,ω−1g(τθ1,ω,x(τθ1,ω))−βτθ2,ω−1g(τθ2,ω,x(τθ2,ω))
∣∣

≤ 1

Ω

Ω∑
ω=1

GI{τθ1,ω 6= τθ2,ω}

≤ 1

Ω

Ω∑
ω=1

G
∑
t∈[T ]

I{πθ1
(t,x(ω, t)) 6= πθ2

(t,x(ω, t))}

≤ G

Ω

Ω∑
ω=1

∑
t∈[T ]

∑
s∈splits

I
{
xv(s)(ω, t)∈ [min{θ1s, θ2s} ,max{θ1s, θ2s}]

}
,

where in the second inequality we used Assumption 2. �

We end this section with the proofs of Theorem 1 and Corollary 1 from Section 3.4.

Proof of Theorem 1. Since we are restricting our analysis to policies in Πtree(d), it follows
that there is a finite number of tuples (T ,v,a). For each choice of such tuple, almost surely,∣∣∣Jπ(·;T ,v,θ,a)(x̄)− Ĵπ(·;T ,v,θ,a)(x̄)

∣∣∣≤ ε for all θ ∈X and Ω≥Ω(T ,v,a). The result follows by taking

Ω0 = max(T ,v,a){Ω(T ,v,a)}. �

Proof of Corollary 1. Consider the case that supπ∈Πtree(d) J
π(x̄) ≥ supπ∈Πtree(d) Ĵ

π(x̄). This is
without loss of generality since the other case is symmetric. We know that there must exist some
policy π ∈Πtree(d) such that

Jπ(x̄)≥ sup
π∈Πtree(d)

Jπ(x̄)− ε

2
. (EC.1)

Additionally, by Theorem 1, almost surely there exists Ω0 such that for all Ω ≥ Ω0,∣∣∣Jπ(x̄)− Ĵπ(x̄)
∣∣∣≤ ε/2 for all policies π ∈Πtree(d) and thus,

Ĵπ(x̄)≥ Jπ(x̄)− ε

2
a. s. (EC.2)
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Together, equations (EC.1) and (EC.2) imply that∣∣∣∣∣ sup
π∈Πtree(d)

Jπ(x̄)− sup
π∈Πtree(d)

Ĵπ(x̄)

∣∣∣∣∣= sup
π∈Πtree(d)

Jπ(x̄)− sup
π∈Πtree(d)

Ĵπ(x̄)

≤ sup
π∈Πtree(d)

Jπ(x̄)− Ĵπ(x̄)

≤ Jπ(x̄)− Ĵπ(x̄) +
ε

2
≤ ε a. s. �

EC.1.2. Proofs for Section 3.5
EC.1.2.1. Proof of Proposition 1 We will prove this by showing that the minimum vertex

cover problem reduces to the leaf action SAA problem (8). The minimum vertex cover problem is
stated as follows:
Minimum Vertex Cover: Given a graph (V,E), where V is the set of nodes and E is the
set of edges, find the smallest subset of nodes S ⊆ V such that every edge is covered, i.e., for
all e∈E, there exists a node i in S such that e is incident to i.

Given a graph (V,E), we will now define an instance of the leaf action SAA problem. To do this,
we need to specify a sample of trajectories, a tree topology, split variable indices and split points.
We start by defining the trajectories. We assume that the nodes in V are indexed from 1 to |V |,
and the edges in E are indexed from 1 to |E|.

Trajectories. We will assume that the ambient space of our stochastic process is X = R|V |+1. We
assume that we have Ω = |V |+ |E| trajectories, each with T = 3 periods. We will consider two
types of trajectories:

1. Edge trajectories: These trajectories are indexed by ω = 1, . . . , |E|, and each such trajectory
corresponds to an edge in the graph. For each edge e, let e1 and e2 be the two vertices to
which edge e is incident. For each trajectory ω that corresponds to an edge e∈E, we assume
that it takes the following values:

xi(1) = 0, ∀ i∈ {1, . . . , |V |+ 1},
xi(2) = I{i= e1}, ∀ i∈ {1, . . . , |V |+ 1},
xi(3) = I{i= e2}, ∀ i∈ {1, . . . , |V |+ 1}.

In words, a trajectory for an edge e is zero at all coordinates, except at the vertices to which
e is incident, for which the corresponding coordinates tick up to 1 at periods t= 2 and t= 3.

2. Vertex trajectories: These trajectories are indexed by ω= |E|+ 1, . . . , |E|+ |V |, and each such
trajectory corresponds to a vertex in the graph. For each such trajectory ω that corresponds
to a vertex v ∈ V , we assume that it takes the following values:

xi(1) = I{i= v}, ∀ i∈ {1, . . . , |V |+ 1},
xi(2) = 0, ∀ i∈ {1, . . . , |V |+ 1},
xi(3) = I{i= |V |+ 1}, ∀ i∈ {1, . . . , |V |+ 1}.

In words, this trajectory is zero in all coordinates, except for coordinates v and |V |+ 1: for
coordinate v, it starts at 1 at t= 1, and comes down to 0 at t= 2, and for coordinate |V |+ 1,
it start at 0 at t= 1 and ticks up to 1 at t= 3.

We define the payoff function g as follows:

g(t,x) =

 1 if t∈ {2,3} and xi = 1 for any i∈ {1, . . . , |V |},
1/(|V |+ 1) if t= 3 and x|V |+1 = 1,
0 otherwise.
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Figure EC.1 Visualization of topology of tree policy for proof of Proposition 1.
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indices for Proposition 1 proof.
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(b) Topology with split variables and split points
for Proposition 1 proof.

To understand the payoff function, we receive a reward of 1 if we stop at t= 2 or t= 3 in a state x
where any coordinate i ∈ {1, . . . , |V |} is one; we receive a reward of 1/(|V |+ 1) if we stop at t= 3
in a state x where coordinate |V |+ 1 is one; and for any other state-time pair, we receive zero.
For each edge trajectory ω = 1, . . . , |E|, this means that if we stop at t = 2 or t = 3 of any edge
trajectory ω = 1, . . . , |E|, we will get a reward of 1; otherwise, if we stop at t = 1, we will get a
reward of 0. For each vertex trajectory ω = |E|+ 1, . . . , |E|+ |V |, stopping at t= 1 or t= 2 gives
us a reward of zero, and stopping at t= 3 gives us a reward of 1/(|V |+ 1).

Tree topology. Our tree consists of |V |+1 splits and |V |+2 leaves. We number the split nodes from
1 to |V |+ 1, and we number the leaf nodes from |V |+ 2 to 2|V |+ 3. We define the left and right
children of the split nodes as follows:

leftchild(s) = s+ 1, s= 1, . . . , |V |,
rightchild(s) = |V |+ 1 + s, s= 1, . . . , |V |,
leftchild(|V |+ 1) = 2|V |+ 3,

rightchild(|V |+ 1) = 2|V |+ 2.

Figure EC.1a visually displays this topology.
Split variable indices and split points. For each split s = 1, . . . , |V | + 1, we define the variable
v(s) = s, and we define the split point θ(s) = 0.5. Figure EC.1b shows the tree topology together
with the split variable indices and split points.

Note that with this tree topology, split points and split variable indices, the policy will behave as
follows:

1. For an edge trajectory corresponding to an edge e:
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• At t= 1, the policy will take action a(2|V |+ 3);
• At t= 2, the policy will take action a(|V |+ e1); and
• At t= 3, the policy will take action a(|V |+ e2).

2. For a vertex trajectory corresponding to a vertex v:
• At t= 1, the policy will take action a(|V |+ 1 + v);
• At t= 2, the policy will take action a(2|V |+ 3); and
• At t= 3, the policy will take action a(2|V |+ 2).

Reduction of vertex cover to leaf action problem. Consider now the problem of deciding the leaf
actions. We will show that the optimal solution of this problem provides an optimal solution of the
vertex cover problem.

Let a∗ be an optimal collection of leaf actions (i.e., an optimal solution of the leaf action SAA
problem). Observe that the leaf actions for `= |V |+2, . . . ,2|V |+1 can be interpreted as a collection
of vertices: if the leaf action is stop, this indicates that the vertex is in the collection, whereas if
the action is go, this indicates that the vertex is not in the collection. We therefore specify the set
of vertices as S = {v ∈ V | a∗(|V |+ 1 + v) = stop}.

We consider two cases:

Case 1: E = ∅, i.e., there are no edges. In this degenerate case, an upper bound on the reward
we can achieve is given by |V |/(|V |+ 1). (This is because the highest possible reward for each
of the vertex trajectories is 1/(|V |+ 1), and there are |V | such trajectories; recall that there are
no edge trajectories.) This upper bound can only be attained by setting a∗(|V |+ 1 + v) = go for
v = 1, . . . , |V |, setting a∗(2|V |+ 2) = stop and setting a∗(2|V |+ 3) = go. Note that in this case,
the corresponding set of vertices S is exactly the empty set, which is exactly the optimal solution
of the vertex cover problem in this case.

Case 2: E 6= ∅, i.e., there is at least one edge.
We first argue that the set S must be a bona fide cover. To see this, we argue by contradiction.

Suppose that S is not a cover of E; then there exists an edge e such that the corresponding vertices
i and j are not in the cover. This would mean that both a∗(|V |+ 1 + i) and a∗(|V |+ 1 + j) are
set to go. This, in turn means that the reward of 1 of the edge trajectory e cannot be earned by
the tree policy. (To obtain the reward, we must stop at t= 2 or t= 3 in this trajectory; given the
trajectory and the topology, split variable indices and split points, this can only happen if at least
one of the two actions is stop.) This means that the reward that the policy can obtain is upper
bounded by |E| − 1 + |V |/(|V |+ 1). However, if we set a so that the corresponding vertex set S of
a covers E, and we additionally set a(2|V |+ 2) = stop and a(2|V |+ 3) = go, our reward will be at
least |E|. Therefore, it must be that S covers all edges.

We now argue that S is a minimal cover. To see this, we again argue by contradiction. Suppose
that there is a cover S′ such that |S′|< |S|. Consider the set of leaf actions a′, which is defined as
follows:

a′(|V |+ 1 + v) =

{
stop if v ∈ S′,
go if v /∈ S′,

a′(2|V |+ 2) = stop,

a′(2|V |+ 3) = go.

The corresponding tree policy with a′ has the following behavior. For all edge trajectories, it stops
at t= 2 or t= 3, because S′ is a cover; as a result, it accrues a reward of 1 from all edge trajectories.
For those vertex trajectories corresponding to vertices in S′, it stops at t= 2, accruing a reward of
zero. For those vertex trajectories corresponding to vertices not in S′, it stops at t= 3, accruing a
reward of 1/(|V |+ 1). Therefore, the total reward is |E|+ (|V | − |S′|)/(|V |+ 1).

Now, we show that for a∗, the reward is upper bounded by |E|+ (|V | − |S|)/(|V |+ 1). Observe
that if this is the case, we immediately have our contradiction because the reward |E|+ (|V | −
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|S|)/(|V |+ 1) will be smaller than |E|+ (|V | − |S′|)/(|V |+ 1) (this follows from |S|> |S′|), which
will contradict the fact that a∗ is an optimal solution of the leaf action SAA problem. To see this,
observe that for each edge trajectory, since S is a cover, the policy can garner at most a reward of
1, resulting in a total reward of |E| from the edge trajectories. For the vertex trajectories, observe
that for all vertices v ∈ S, the reward for the corresponding vertex trajectory must be zero, because
the tree policy must stop at t = 1 (the reward for any vertex trajectory at t = 1 is zero). For
each vertex trajectory corresponding to a vertex v /∈ S, the most reward that can be garnered is
1/(|V |+ 1) (obtained by stopping at t= 3). Therefore, an upper bound for the reward is

|E|+ |V \S|/ (|V |+ 1)

=|E|+ (|V | − |S|)/(|V |+ 1).

This gives us our contradiction, and establishes that S is a minimal cover.
We have thus shown that any instance (V,E) of the minimum vertex cover problem can be

transformed to an instance of the leaf action problem (8); moreover, the instance is polynomially-
sized in terms of V and E. Since the minimum vertex cover problem is known to be NP-Complete
(Garey and Johnson 1979), it follows that the leaf action problem is NP-Hard. �

EC.1.2.2. Proof of Proposition 2 To prove that the split variable index SAA problem is
NP-Hard, we will again show that the minimum vertex cover problem reduces to it. We will prove
the result by considering an instance (V,E) of the minimum vertex cover problem, and considering
the same set of trajectories, payoff function and tree topology from the proof of Proposition 1.

In this version of the overall tree optimization problem, the leaf actions a are now fixed, and the
split variable indices must be chosen. For the leaf actions, we set them as follows:

a(|V |+ 1 + i) = stop, ∀ i∈ V,
a(2|V |+ 2) = stop,

a(2|V |+ 3) = go.

We also use v(1), . . . , v(|V | + 1) to denote the split variable indices of splits s = 1, . . . , |V | + 1.
Figure EC.2 visualizes the tree policy structure.

Note that with this tree topology, split points and leaf actions, the policy will behave as follows:
1. For an edge trajectory corresponding to an edge e:

• At t= 1, the policy will take the action go;
• At t = 2, the policy will take the action stop if and only if v(s) = e1 for some s ∈

{1, . . . , |V |+ 1}; and
• At t = 3, the policy will take the action stop if and only if v(s) = e2 for some s ∈

{1, . . . , |V |+ 1}.
2. For a vertex trajectory corresponding to a vertex v:

• At t = 1, the policy will take the action stop if and only if v(s) = v for some s ∈
{1, . . . , |V |+ 1};
• At t= 2, the policy will take the action go; and
• At t = 3, the policy will take the action stop if and only if v(s) = |V | + 1, for some

s∈ {1, . . . , |V |+ 1}.
Let v∗ be an optimal solution of the corresponding split variable index SAA problem. Let

S = {i∈ V, |v(s) = i for some s∈ splits} be the set of split variable indices. Effectively, v∗ encodes
a subset of the vertices of V , and we denote this subset by S. We show that S is an optimal
solution of the vertex cover problem. We split our analysis in two cases:

Case 1: E = ∅. In the case that there are no edges, an upper bound on the objective value of
the split variable index SAA problem is |V |/(|V | + 1), which follows because the most reward
that can be obtained from any of the vertex trajectories is 1/(|V | + 1) and there are |V | such
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Figure EC.2 Tree policy for Proposition 2 proof.

trajectories. This upper bound can only be attained by setting v(1) = · · · = v(|V |+ 1) = |V |+ 1,
which corresponds to a set of vertices S = ∅, which is precisely the optimal solution in this case.

Case 2: E 6= ∅. In this case, we show that S is both a feasible cover and a minimal cover.
To see that S is feasible, suppose that S were not a feasible cover. This would mean that there

exists an edge e such that the two vertices that are incident to this edge, e1 and e2, are not chosen
as split variable indices – in other words, for all s ∈ splits, v(s) /∈ {e1, e2}. This means that the
policy cannot garner the reward of 1 from the edge trajectory corresponding to e. As a result,
the reward of the tree policy that corresponds to v∗ is upper bounded by |E| − 1 + |V |/(|V |+ 1).
However, note that one can attain a reward of at least |E|, which is higher, by simply setting
v(1) = 1, v(2) = 2, . . . , v(|V |) = |V | in the tree policy (this policy is guaranteed to obtain a reward of
1 from every edge trajectory). This leads to a contradiction, because v∗ is assumed to be optimal.
Therefore, it must be the case that S is a feasible cover.

To see that S is a minimal cover, suppose that we could find S′ ⊆ V that covers E such that
|S′|< |S|. Enumerate the nodes in S′ as S′ = {i1, . . . , i|S′|}, and consider the solution v′ to the split
variable index SAA problem obtained by setting

v(1) = i1,

v(2) = i2,

...

v(|S′|) = i|S′|,

v(|S′|+ 1) = |V |+ 1,

...

v(|V |) = |V |+ 1,
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v(|V |+ 1) = |V |+ 1.

The resulting tree policy will stop at either t= 2 or t= 3 in every edge trajectory (because S′ is
assumed to be a cover), and accrue a reward of 1 from each such trajectory. For each vertex i∈ S′,
it will stop at t = 1 in the corresponding vertex trajectory, and obtain a reward of 0. For each
vertex i /∈ S′, it will stop at t= 3 in the ith vertex trajectory and obtain a reward of 1/(|V |+ 1).
The total reward is therefore |E|+ (|V | − |S′|)/(|V |+ 1).

Observe that for v∗, the total reward is at most |E|+ (|V | − |S|)/(|V |+ 1). Since |S′|< |S|, it
follows that

|E|+ (|V | − |S|)/(|V |+ 1)< |E|+ (|V | − |S′|)/(|V |+ 1),

which implies that v′ attains a higher objective than v∗ in the split variable index SAA problem.
This immediately results in a contradiction, because v∗ is assumed to be an optimal solution of
that problem. It therefore follows that the cover S we defined above in terms of v∗ is a minimal
cover.

Thus, by solving the split variable index problem, we are able to solve the minimum vertex
cover problem. Since the minimum vertex cover problem is NP-Complete and the instance we have
described is polynomially sized in terms of E and V , it follows that the split variable index problem
must be NP-Hard. �

EC.1.2.3. Proof of Proposition 3 The proof that the split point SAA problem is NP-Hard
follows along similar lines as the proofs of Propositions 1 and 2 – in particular, by fixing a specific
tree topology, split variable indices and leaf actions, and a specific set of trajectories, one can show
that the split point SAA problem can be used to solve the minimum vertex cover problem.

Given an instance (V,E) of the minimum vertex cover problem, consider the same set of trajec-
tories and payoffs as in the proofs of Propositions 2, and the same tree topology and split variable
indices. Define the leaf actions as

a(|V |+ 2) = stop,

a(|V |+ 3) = stop,

...

a(2|V |+ 1) = stop,

a(2|V |+ 2) = stop,

a(2|V |+ 3) = go.

Figure EC.3 visualizes the tree policy structure.
Note that with this tree topology, split variable indices and leaf actions, the policy will behave

as follows:
1. For an edge trajectory corresponding to an edge e:

• At t= 1, the policy will take the action go if and only if θ(s)≥ 0 for all s;
• At t = 2, the policy will take the action go if and only if θ(s) ≥ 0 for all s 6= e1 and

θ(e1)≥ 1; and
• At t = 3, the policy will take the action go if and only if θ(s) ≥ 0 for all s 6= e2 and

θ(e2)≥ 1.
2. For a vertex trajectory corresponding to a vertex v:

• At t= 1, the policy will take the action go if and only if θ(s)≥ 0 for all s 6= v and θ(v)≥ 1;
• At t= 2, the policy will take the action go if and only if θ(s)≥ 0 for all s; and
• At t= 3, the policy will take the action go if and only if θ(s)≥ 0 for all s 6= |V |+ 1 and

θ(|V |+ 1)≥ 1.
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Figure EC.3 Tree policy for Proposition 3 proof.

Let θ∗ = (θ∗(1), θ∗(2), . . . , θ∗(|V |+ 1)) be an optimal solution to the split point SAA problem.
Define the set of vertices S as

S = {i∈ V |θ(i)∈ [0,1)}.
We will now show that S is an optimal solution of the vertex cover problem.

Before we show this, we first argue that in any optimal solution θ∗ of the split point SAA
problem, it must be that θ∗(i)≥ 0 for all i= 1, . . . , |V |+ 1. To see this, observe that if there exists
an i such that θ∗(i)< 0, then at t= 1, we will stop in every trajectory, because every coordinate of
every trajectory is greater than or equal to 0 at t= 1. As a result, we will accrue a total reward of
zero from such a policy. However, observe that if we set every θ(i) to 0.5, then we are guaranteed to
stop at t= 2 or t= 3 in every edge trajectory and accrue a reward of 1 from each such trajectory;
as a result, the total reward will be at least |E|, which would contradict the optimality of θ∗.

We now prove that S solves the minimum vertex cover problem. We consider two cases:

Case 1: E = ∅. In this case, observe that an upper bound on the reward that can be obtained is
|V |/(|V |+ 1). This reward can only be attained by setting θ(v) ≥ 1 for every v = 1, . . . , |V |, and
θ(|V |+ 1) ∈ [0,1). Note that the set of vertices S that corresponds to θ in this case is the empty
set, which is exactly the optimal solution of the minimum vertex cover problem in this case.

Case 2: E 6= ∅. In this case, we show that S both a feasible cover and a minimal cover.
To see that S is a feasible cover, suppose that S were not a feasible cover. This would mean

that there is an edge e that is not covered, i.e., that e1, e2 /∈ S. By the definition of S, this would
mean that θ(e1) /∈ [0,1) and θ(e2) /∈ [0,1). Note that by the definition of the tree policy and the
trajectories, this would mean that the policy defined by θ∗ either stops at t = 1 for the edge
trajectory corresponding to e (resulting in a reward of zero from that trajectory), or it does not
stop at any t (again, resulting in a reward of zero from the trajectory). As a result, the reward
obtained by θ∗ would be upper bounded by |E| − 1 + |V |/(|V |+ 1). However, observe that just by
setting all θ(s) = 0.5 for s= 1, . . . , |V |+1, we would obtain a policy that stops each edge trajectory
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at either t= 2 or t= 3, which would guarantee a reward of at least |E|, which is greater. Since this
would contradict the optimality of θ∗, it follows that S must be a feasible cover.

To see that S is a minimal cover, suppose this were not the case. This would mean that there
exists a set S′ that covers E and is smaller, i..e, |S′| < |S|. For this cover S′, define a new split
point vector θ′ as

θ′(s) = 0.5, ∀s∈ S′,
θ′(s) = 1, ∀s∈ V \S′,
θ′(|V |+ 1) = 0.5.

Since S′ covers E, this policy is guaranteed to stop at t= 2 or t= 3 for every edge trajectory, and
thus will garner a reward of 1 from each such trajectory. For each vertex i∈ S, it will stop at t= 1
in the corresponding vertex trajectory, and garner a reward of zero. For each vertex i /∈ S, it will
stop at t = 3 in the corresponding vertex trajectory, and earn a reward of 1/|V |+ 1. Thus, the
reward of the policy defined by θ′ will be |E|+ (|V | − |S′|)/(|V |+ 1).

Now, observe that for the optimal policy θ∗, since S corresponds to a feasible cover, the total
reward from all edge trajectories for θ∗ is upper bounded by |E|. For s∈ S, by definition of S, the
reward from the vertex trajectory corresponding to s must be zero. For s∈ V \S, the reward from
the vertex trajectory corresponding to s is upper bounded by 1/|V |+ 1. Therefore, the reward
of θ∗ is upper bounded by |E|+ (|V | − |S|)/(|V |+ 1). Since |S′|< |S|, this would imply that the
reward of θ′ is greater than the reward of θ; however, this would contradict the fact that θ∗ is an
optimal solution to the split point SAA problem. Therefore, it must be that S as defined above is
a minimal cover.

This establishes that the split point SAA problem is NP-Hard, as required. �
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EC.2. Additional numerical results
EC.2.1. Additional results on sensitivity to γ
In our previous experiments, we estimated the tree policies with a fixed γ value of 0.005, which
corresponds to a requirement of a 0.5% relative improvement in the objective with each iteration of
the construction algorithm. In this section, we consider how the tree policies and their performance
changes as γ varies.

To understand how the performance changes as a function of γ, we randomly generate training
and testing sets consisting of 2000 and 100000 trajectories, respectively, for values of n∈ {4,8,16}
and p̄∈ {90,100,110}, for 10 replications. We use a common correlation of ρ̄= 0. For each replica-
tion, we run our construction algorithm on the training set and at each iteration, we compute the
performance of the current tree on the training set and the testing set; we stop the construction
algorithm at a γ value of 0.0001. (We do not test smaller values of γ, due to the prohibitively large
number of iterations that such smaller tolerances result in.) We test three different sets of basis
functions: prices; prices, time; and prices, time, payoff, KOind.

Table EC.1 shows the in-sample and out-of-sample performance of the tree policies at different
values of γ for the three sets of basis functions. The values are averaged over the ten replications.
To simplify the presentation, we focus on n= 8 and p̄= 90, as the results for other values of n and
p̄ are qualitatively similar. While the in-sample performance improves as γ decreases, the out-of-
sample performance improves up to a point, after which it begins to decrease. For example, with
prices only, the out-of-sample performance begins to decrease for γ lower than 0.001. However, in
all cases the deterioration appears to be mild (relative to the best average out-of-sample objective,
the lowest value of γ is only a few percent lower). This suggests that some care needs to be taken
in selecting the right value of γ, as the tree policy may overfit the available training data. One
possibility, as alluded to earlier, is to use part of the training data for building the tree policy and
to use the remainder as a validation set, and to select the value of γ that gives the highest objective
on the validation set; then, the whole training set would be used to re-estimate the tree policy.
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Table EC.1 In-sample and out-of-sample rewards for tree policies as a function of γ for n= 8 assets and p̄= 90
and common correlation ρ̄= 0.

State variables γ Training Obj. Test. Obj. Num. Iter.

prices 0.1000 20.38 19.52 3.2
0.0500 33.37 32.66 10.8
0.0100 35.48 34.62 14.2
0.0050 36.74 35.60 19.7
0.0010 39.93 37.56 53.0
0.0005 40.89 37.48 83.8
0.0001 42.60 36.60 239.0

prices, time 0.1000 27.68 27.10 2.0
0.0500 28.17 27.52 2.4
0.0100 36.10 35.47 12.5
0.0050 39.76 38.89 23.8
0.0010 44.81 43.22 59.1
0.0005 45.65 43.53 82.5
0.0001 46.96 42.36 209.4

prices, time, 0.1000 44.65 44.68 2.9
payoff, KOind 0.0500 44.81 44.84 3.0

0.0100 45.40 45.35 4.6
0.0050 45.47 45.38 5.0
0.0010 45.64 45.41 7.5
0.0005 45.78 45.39 11.6
0.0001 46.05 45.31 36.2
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EC.2.2. Performance results for ρ̄= 0
Table EC.2 provides additional performance results in the ρ̄= 0 case, analogous to those in Table 1,
for n= 4 and n= 16.

Table EC.2 Comparison of out-of-sample performance between Longstaff-Schwartz and tree policies for n= 4
and n= 16 assets, for different initial prices p̄ and common correlation ρ̄= 0. In each column, the best

performance is indicated in bold.

n Method State variables / Basis functions Initial Price
p̄ = 90 p̄ = 100 p̄ = 110

4 LS one 24.68 (0.021) 31.77 (0.020) 37.47 (0.017)
4 LS prices 25.76 (0.021) 32.06 (0.024) 37.40 (0.023)
4 LS pricesKO 28.52 (0.018) 38.31 (0.027) 46.58 (0.027)
4 LS pricesKO KOind 30.23 (0.016) 39.05 (0.021) 46.58 (0.023)
4 LS pricesKO KOind payoff 32.73 (0.029) 41.22 (0.022) 47.75 (0.015)
4 LS pricesKO KOind payoff 33.04 (0.023) 41.31 (0.020) 47.76 (0.014)

maxpriceKO
4 LS pricesKO KOind payoff 32.98 (0.022) 41.35 (0.022) 47.81 (0.012)

maxpriceKO max2priceKO
4 LS pricesKO payoff 33.47 (0.021) 41.70 (0.015) 47.72 (0.007)
4 LS pricesKO prices2KO KOind payoff 33.43 (0.022) 41.81 (0.022) 48.03 (0.013)

4 PO prices 31.43 (0.017) 38.91 (0.018) 43.40 (0.016)
4 PO pricesKO KOind payoff 31.39 (0.037) 40.61 (0.044) 48.46 (0.015)
4 PO pricesKO KOind payoff 32.20 (0.032) 41.11 (0.037) 48.49 (0.015)

maxpriceKO max2priceKO
4 PO pricesKO prices2KO KOind payoff 33.66 (0.026) 42.49 (0.013) 48.77 (0.013)

4 Tree payoff time 34.30 (0.028) 43.08 (0.022) 49.38 (0.019)
4 Tree prices 27.14 (0.048) 36.91 (0.021) 45.15 (0.043)
4 Tree prices payoff 27.34 (0.022) 37.13 (0.015) 45.77 (0.014)
4 Tree prices time 33.76 (0.126) 39.51 (0.470) 40.94 (0.370)
4 Tree prices time payoff 34.30 (0.028) 43.08 (0.022) 49.38 (0.019)
4 Tree prices time payoff KOind 34.30 (0.028) 43.08 (0.022) 49.38 (0.019)

16 LS one 39.09 (0.021) 43.19 (0.016) 47.12 (0.025)
16 LS prices 38.99 (0.022) 43.11 (0.015) 47.04 (0.027)
16 LS pricesKO 50.34 (0.024) 53.40 (0.009) 54.68 (0.007)
16 LS pricesKO KOind 50.41 (0.026) 53.72 (0.008) 54.97 (0.009)
16 LS pricesKO KOind payoff 50.51 (0.020) 53.30 (0.009) 54.78 (0.012)
16 LS pricesKO KOind payoff 50.51 (0.020) 53.30 (0.009) 54.78 (0.012)

maxpriceKO
16 LS pricesKO KOind payoff 50.50 (0.020) 53.29 (0.009) 54.78 (0.013)

maxpriceKO max2priceKO
16 LS pricesKO payoff 50.30 (0.018) 52.93 (0.012) 54.45 (0.012)
16 LS pricesKO prices2KO KOind payoff 50.27 (0.016) 53.06 (0.011) 54.59 (0.012)

16 PO prices 45.58 (0.025) 48.05 (0.019) 50.34 (0.017)
16 PO pricesKO KOind payoff 51.26 (0.012) 53.92 (0.007) 55.28 (0.009)
16 PO pricesKO KOind payoff 51.22 (0.015) 53.92 (0.006) 55.27 (0.008)

maxpriceKO max2priceKO

16 Tree payoff time 51.85 (0.015) 54.62 (0.008) 56.00 (0.010)
16 Tree prices 39.70 (0.155) 42.60 (0.125) 43.91 (0.144)
16 Tree prices payoff 49.35 (0.012) 54.17 (0.008) 55.96 (0.008)
16 Tree prices time 39.51 (0.089) 43.10 (0.020) 46.17 (0.502)
16 Tree prices time payoff 51.85 (0.015) 54.62 (0.007) 56.00 (0.010)
16 Tree prices time payoff KOind 51.85 (0.015) 54.62 (0.007) 56.00 (0.010)
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EC.2.3. Performance results for ρ̄∈ {−0.05,+0.05,+0.10,+0.20}
Tables EC.3, EC.4, EC.5 and EC.6 report the performance of the tree and Longstaff-Schwartz
policies for ρ̄ values of −0.05, +0.05, +0.10 and +0.20, respectively. The instantaneous correlation
matrix of the asset price process is set so that ρii = 1 and ρij = ρ̄ for i 6= j. The same experimental
set-up as for ρ̄= 0 is followed (the number of assets n varies in {4,8,16}, the initial price p̄ varies
in {90,100,110}, and each value reported for each method is averaged over ten replications).
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Table EC.3 Comparison of out-of-sample performance between Longstaff-Schwartz and tree policies for
n∈ {4,8,16} assets, for different initial prices p̄ and common correlation ρ̄=−0.05. In each column, the best

performance is indicated in bold.

n Method State variables / Basis functions Initial Price
p̄ = 90 p̄ = 100 p̄ = 110

4 LS one 25.61 (0.021) 32.57 (0.010) 38.11 (0.014)
4 LS prices 26.54 (0.019) 32.79 (0.016) 38.00 (0.016)
4 LS pricesKO 29.48 (0.027) 39.39 (0.023) 47.48 (0.023)
4 LS pricesKO KOind 31.07 (0.012) 40.04 (0.022) 47.48 (0.017)
4 LS pricesKO KOind payoff 33.64 (0.022) 42.12 (0.026) 48.47 (0.014)
4 LS pricesKO KOind payoff 33.88 (0.024) 42.20 (0.026) 48.47 (0.016)

maxpriceKO
4 LS pricesKO KOind payoff 33.85 (0.024) 42.23 (0.021) 48.51 (0.013)

maxpriceKO max2priceKO
4 LS pricesKO payoff 34.36 (0.026) 42.56 (0.020) 48.41 (0.013)
4 LS pricesKO prices2KO KOind payoff 34.26 (0.022) 42.65 (0.018) 48.70 (0.019)

4 Tree payoff time 35.20 (0.064) 43.86 (0.022) 50.02 (0.020)
4 Tree prices 27.83 (0.024) 37.76 (0.026) 46.08 (0.037)
4 Tree prices payoff 28.06 (0.028) 37.97 (0.026) 46.61 (0.019)
4 Tree prices time 34.74 (0.062) 40.33 (0.341) 41.61 (0.347)
4 Tree prices time payoff 35.20 (0.064) 43.86 (0.021) 50.03 (0.020)
4 Tree prices time payoff KOind 35.20 (0.064) 43.86 (0.021) 50.03 (0.020)

8 LS one 34.99 (0.018) 39.57 (0.014) 44.02 (0.017)
8 LS prices 34.95 (0.021) 39.44 (0.016) 43.92 (0.021)
8 LS pricesKO 43.00 (0.021) 50.51 (0.017) 53.76 (0.012)
8 LS pricesKO KOind 43.40 (0.013) 50.55 (0.016) 54.03 (0.009)
8 LS pricesKO KOind payoff 45.15 (0.017) 50.76 (0.018) 53.58 (0.006)
8 LS pricesKO KOind payoff 45.15 (0.017) 50.75 (0.018) 53.58 (0.006)

maxpriceKO
8 LS pricesKO KOind payoff 45.17 (0.016) 50.74 (0.019) 53.57 (0.005)

maxpriceKO max2priceKO
8 LS pricesKO payoff 45.35 (0.012) 50.56 (0.017) 53.25 (0.008)
8 LS pricesKO prices2KO KOind payoff 45.27 (0.014) 50.77 (0.018) 53.58 (0.009)

8 Tree payoff time 46.58 (0.020) 52.11 (0.024) 54.92 (0.011)
8 Tree prices 36.73 (0.101) 44.54 (0.091) 47.83 (0.089)
8 Tree prices payoff 40.56 (0.018) 49.66 (0.020) 54.35 (0.010)
8 Tree prices time 39.13 (0.196) 40.81 (0.503) 43.41 (0.123)
8 Tree prices time payoff 46.58 (0.020) 52.11 (0.024) 54.92 (0.010)
8 Tree prices time payoff KOind 46.58 (0.020) 52.11 (0.024) 54.92 (0.010)

16 LS one 40.34 (0.021) 44.27 (0.035) 48.10 (0.022)
16 LS payoff time 43.78 (0.035) 45.83 (0.045) 48.19 (0.018)
16 LS prices 40.25 (0.022) 44.21 (0.036) 48.05 (0.020)
16 LS pricesKO 51.78 (0.015) 54.13 (0.007) 55.06 (0.008)
16 LS pricesKO KOind 51.76 (0.012) 54.16 (0.009) 55.16 (0.011)
16 LS pricesKO KOind payoff 51.56 (0.013) 53.78 (0.010) 55.12 (0.008)
16 LS pricesKO KOind payoff 51.56 (0.013) 53.78 (0.010) 55.12 (0.008)

maxpriceKO
16 LS pricesKO KOind payoff 51.54 (0.013) 53.76 (0.009) 55.11 (0.010)

maxpriceKO max2priceKO
16 LS pricesKO payoff 51.51 (0.014) 53.65 (0.010) 55.01 (0.010)
16 LS pricesKO prices2KO KOind payoff 51.30 (0.015) 53.53 (0.015) 54.93 (0.008)

16 Tree payoff time 52.75 (0.011) 54.94 (0.006) 56.14 (0.009)
16 Tree prices 40.81 (0.089) 43.11 (0.167) 44.06 (0.118)
16 Tree prices payoff 51.09 (0.011) 54.81 (0.007) 56.13 (0.009)
16 Tree prices time 41.16 (0.076) 44.23 (0.095) 47.28 (0.509)
16 Tree prices time payoff 52.74 (0.011) 54.94 (0.006) 56.13 (0.009)
16 Tree prices time payoff KOind 52.74 (0.011) 54.94 (0.006) 56.13 (0.009)
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Table EC.4 Comparison of out-of-sample performance between Longstaff-Schwartz and tree policies for
n∈ {4,8,16} assets, for different initial prices p̄ and common correlation ρ̄= +0.05. In each column, the best

performance is indicated in bold.

n Method State variables / Basis functions Initial Price
p̄ = 90 p̄ = 100 p̄ = 110

4 LS one 23.84 (0.022) 31.00 (0.020) 36.77 (0.013)
4 LS payoff time 32.07 (0.031) 39.32 (0.015) 42.96 (0.073)
4 LS prices 25.00 (0.023) 31.37 (0.019) 36.72 (0.012)
4 LS pricesKO 27.68 (0.029) 37.42 (0.033) 45.68 (0.029)
4 LS pricesKO KOind 29.50 (0.023) 38.21 (0.021) 45.73 (0.026)
4 LS pricesKO KOind payoff 31.93 (0.028) 40.41 (0.028) 47.03 (0.019)
4 LS pricesKO KOind payoff 32.30 (0.027) 40.55 (0.029) 47.04 (0.018)

maxpriceKO
4 LS pricesKO KOind payoff 32.28 (0.027) 40.59 (0.029) 47.08 (0.017)

maxpriceKO max2priceKO
4 LS pricesKO payoff 32.69 (0.024) 40.88 (0.020) 47.03 (0.014)
4 LS pricesKO prices2KO KOind payoff 32.71 (0.024) 41.01 (0.023) 47.34 (0.008)

4 Tree payoff time 33.68 (0.048) 42.26 (0.033) 48.70 (0.024)
4 Tree prices 26.47 (0.021) 36.00 (0.044) 44.29 (0.054)
4 Tree prices payoff 26.74 (0.023) 36.29 (0.027) 44.95 (0.019)
4 Tree prices time 32.97 (0.088) 38.90 (0.423) 40.48 (0.287)
4 Tree prices time payoff 33.68 (0.048) 42.26 (0.033) 48.70 (0.024)
4 Tree prices time payoff KOind 33.68 (0.048) 42.26 (0.033) 48.70 (0.024)

8 LS one 32.65 (0.022) 37.73 (0.020) 42.31 (0.018)
8 LS payoff time 40.40 (0.044) 42.95 (0.030) 44.46 (0.025)
8 LS prices 32.81 (0.023) 37.61 (0.019) 42.19 (0.019)
8 LS pricesKO 39.95 (0.034) 48.18 (0.017) 52.40 (0.009)
8 LS pricesKO KOind 40.40 (0.027) 48.15 (0.022) 52.74 (0.017)
8 LS pricesKO KOind payoff 42.48 (0.033) 48.93 (0.015) 52.53 (0.014)
8 LS pricesKO KOind payoff 42.57 (0.032) 48.93 (0.016) 52.52 (0.014)

maxpriceKO
8 LS pricesKO KOind payoff 42.60 (0.033) 48.96 (0.013) 52.52 (0.015)

maxpriceKO max2priceKO
8 LS pricesKO payoff 42.79 (0.027) 48.69 (0.013) 52.06 (0.012)
8 LS pricesKO prices2KO KOind payoff 42.88 (0.030) 49.07 (0.011) 52.61 (0.014)

8 Tree payoff time 44.24 (0.021) 50.43 (0.008) 54.08 (0.009)
8 Tree prices 34.17 (0.217) 42.65 (0.105) 46.41 (0.104)
8 Tree prices payoff 37.75 (0.025) 47.08 (0.023) 52.84 (0.012)
8 Tree prices time 37.74 (0.259) 40.02 (0.337) 41.81 (0.109)
8 Tree prices time payoff 44.24 (0.022) 50.43 (0.008) 54.08 (0.010)
8 Tree prices time payoff KOind 44.24 (0.022) 50.43 (0.008) 54.08 (0.010)

16 LS one 37.96 (0.023) 42.12 (0.023) 46.19 (0.019)
16 LS payoff time 42.70 (0.041) 44.48 (0.020) 46.73 (0.031)
16 LS prices 37.84 (0.026) 42.01 (0.029) 46.09 (0.019)
16 LS pricesKO 48.95 (0.011) 52.60 (0.010) 54.33 (0.011)
16 LS pricesKO KOind 49.00 (0.015) 53.08 (0.011) 54.72 (0.010)
16 LS pricesKO KOind payoff 49.44 (0.014) 52.73 (0.009) 54.45 (0.012)
16 LS pricesKO KOind payoff 49.44 (0.014) 52.73 (0.009) 54.45 (0.012)

maxpriceKO
16 LS pricesKO KOind payoff 49.44 (0.015) 52.72 (0.008) 54.44 (0.011)

maxpriceKO max2priceKO
16 LS pricesKO payoff 49.14 (0.010) 52.21 (0.013) 53.96 (0.013)
16 LS pricesKO prices2KO KOind payoff 49.26 (0.012) 52.51 (0.011) 54.29 (0.012)

16 Tree payoff time 50.86 (0.019) 54.17 (0.007) 55.86 (0.010)
16 Tree prices 38.76 (0.147) 41.83 (0.114) 43.49 (0.140)
16 Tree prices payoff 47.62 (0.021) 53.29 (0.012) 55.73 (0.012)
16 Tree prices time 38.74 (0.151) 42.07 (0.028) 44.82 (0.642)
16 Tree prices time payoff 50.86 (0.019) 54.17 (0.007) 55.86 (0.010)
16 Tree prices time payoff KOind 50.86 (0.019) 54.17 (0.007) 55.86 (0.010)
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Table EC.5 Comparison of out-of-sample performance between Longstaff-Schwartz and tree policies for
n∈ {4,8,16} assets, for different initial prices p̄ and common correlation ρ̄= +0.10. In each column, the best

performance is indicated in bold.

n Method State variables / Basis functions Initial Price
p̄ = 90 p̄ = 100 p̄ = 110

4 LS one 23.03 (0.023) 30.22 (0.018) 36.13 (0.024)
4 LS payoff time 31.24 (0.019) 38.71 (0.028) 42.70 (0.058)
4 LS prices 24.30 (0.022) 30.70 (0.018) 36.14 (0.019)
4 LS pricesKO 26.88 (0.026) 36.43 (0.030) 44.74 (0.016)
4 LS pricesKO KOind 28.77 (0.026) 37.36 (0.019) 44.85 (0.019)
4 LS pricesKO KOind payoff 31.07 (0.020) 39.58 (0.019) 46.29 (0.015)
4 LS pricesKO KOind payoff 31.51 (0.019) 39.77 (0.019) 46.32 (0.015)

maxpriceKO
4 LS pricesKO KOind payoff 31.49 (0.026) 39.79 (0.019) 46.36 (0.021)

maxpriceKO max2priceKO
4 LS pricesKO payoff 31.89 (0.014) 40.10 (0.020) 46.36 (0.013)
4 LS pricesKO prices2KO KOind payoff 31.92 (0.018) 40.26 (0.017) 46.64 (0.016)

4 Tree payoff time 32.81 (0.030) 41.53 (0.023) 47.99 (0.020)
4 Tree prices 25.83 (0.021) 35.22 (0.029) 43.39 (0.042)
4 Tree prices payoff 26.07 (0.014) 35.53 (0.022) 44.11 (0.029)
4 Tree prices time 32.37 (0.112) 38.31 (0.322) 39.90 (0.253)
4 Tree prices time payoff 32.81 (0.030) 41.52 (0.021) 47.99 (0.020)
4 Tree prices time payoff KOind 32.81 (0.030) 41.52 (0.021) 47.99 (0.020)

8 LS one 31.46 (0.020) 36.76 (0.022) 41.48 (0.018)
8 LS payoff time 39.52 (0.042) 42.58 (0.035) 44.00 (0.034)
8 LS prices 31.75 (0.015) 36.68 (0.021) 41.36 (0.023)
8 LS pricesKO 38.45 (0.035) 46.95 (0.017) 51.68 (0.015)
8 LS pricesKO KOind 38.97 (0.026) 46.85 (0.018) 52.00 (0.022)
8 LS pricesKO KOind payoff 41.16 (0.027) 47.93 (0.020) 51.95 (0.017)
8 LS pricesKO KOind payoff 41.29 (0.025) 47.94 (0.021) 51.94 (0.016)

maxpriceKO
8 LS pricesKO KOind payoff 41.33 (0.024) 47.98 (0.019) 51.95 (0.014)

maxpriceKO max2priceKO
8 LS pricesKO payoff 41.52 (0.017) 47.74 (0.017) 51.46 (0.013)
8 LS pricesKO prices2KO KOind payoff 41.67 (0.021) 48.15 (0.010) 52.06 (0.016)

8 Tree payoff time 43.09 (0.022) 49.58 (0.024) 53.53 (0.017)
8 Tree prices 33.80 (0.196) 41.40 (0.094) 45.77 (0.117)
8 Tree prices payoff 36.46 (0.015) 45.85 (0.022) 51.98 (0.011)
8 Tree prices time 36.55 (0.218) 39.51 (0.238) 41.23 (0.139)
8 Tree prices time payoff 43.09 (0.022) 49.58 (0.024) 53.53 (0.017)
8 Tree prices time payoff KOind 43.09 (0.022) 49.58 (0.024) 53.53 (0.017)

16 LS one 36.74 (0.017) 41.06 (0.016) 45.25 (0.020)
16 LS payoff time 42.25 (0.032) 43.85 (0.032) 46.07 (0.024)
16 LS prices 36.62 (0.019) 40.93 (0.019) 45.12 (0.024)
16 LS pricesKO 47.47 (0.015) 51.77 (0.013) 53.94 (0.015)
16 LS pricesKO KOind 47.42 (0.017) 52.28 (0.017) 54.40 (0.016)
16 LS pricesKO KOind payoff 48.22 (0.016) 52.06 (0.016) 54.09 (0.011)
16 LS pricesKO KOind payoff 48.23 (0.016) 52.06 (0.016) 54.09 (0.012)

maxpriceKO
16 LS pricesKO KOind payoff 48.24 (0.015) 52.05 (0.016) 54.09 (0.012)

maxpriceKO max2priceKO
16 LS pricesKO payoff 47.93 (0.013) 51.47 (0.011) 53.53 (0.013)
16 LS pricesKO prices2KO KOind payoff 48.11 (0.012) 51.89 (0.017) 53.96 (0.013)

16 Tree payoff time 49.78 (0.021) 53.61 (0.009) 55.63 (0.013)
16 Tree prices 37.11 (0.103) 41.12 (0.083) 43.10 (0.092)
16 Tree prices payoff 45.92 (0.023) 52.31 (0.015) 55.35 (0.012)
16 Tree prices time 37.54 (0.111) 41.14 (0.076) 44.45 (0.270)
16 Tree prices time payoff 49.78 (0.021) 53.61 (0.009) 55.63 (0.013)
16 Tree prices time payoff KOind 49.78 (0.021) 53.61 (0.009) 55.63 (0.013)
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Table EC.6 Comparison of out-of-sample performance between Longstaff-Schwartz and tree policies for
n∈ {4,8,16} assets, for different initial prices p̄ and common correlation ρ̄= +0.20. In each column, the best

performance is indicated in bold.

n Method State variables / Basis functions Initial Price
p̄ = 90 p̄ = 100 p̄ = 110

4 LS one 21.41 (0.025) 28.60 (0.023) 34.77 (0.018)
4 LS payoff time 29.70 (0.026) 37.27 (0.034) 42.07 (0.038)
4 LS prices 22.85 (0.024) 29.28 (0.027) 34.84 (0.017)
4 LS pricesKO 25.22 (0.031) 34.46 (0.026) 42.83 (0.019)
4 LS pricesKO KOind 27.36 (0.018) 35.66 (0.016) 43.17 (0.023)
4 LS pricesKO KOind payoff 29.48 (0.027) 37.80 (0.017) 44.79 (0.023)
4 LS pricesKO KOind payoff 30.04 (0.023) 38.09 (0.016) 44.85 (0.022)

maxpriceKO
4 LS pricesKO KOind payoff 30.02 (0.026) 38.12 (0.018) 44.90 (0.020)

maxpriceKO max2priceKO
4 LS pricesKO payoff 30.34 (0.017) 38.42 (0.021) 44.95 (0.014)
4 LS pricesKO prices2KO KOind payoff 30.42 (0.024) 38.59 (0.021) 45.16 (0.025)

4 Tree payoff time 31.40 (0.047) 39.90 (0.025) 46.58 (0.014)
4 Tree prices 24.59 (0.039) 33.47 (0.030) 41.66 (0.039)
4 Tree prices payoff 24.79 (0.014) 33.86 (0.024) 42.44 (0.014)
4 Tree prices time 30.82 (0.124) 37.06 (0.227) 38.58 (0.188)
4 Tree prices time payoff 31.40 (0.047) 39.90 (0.025) 46.58 (0.014)
4 Tree prices time payoff KOind 31.40 (0.047) 39.90 (0.025) 46.58 (0.014)

8 LS one 29.13 (0.021) 34.94 (0.028) 39.94 (0.013)
8 LS payoff time 37.69 (0.024) 41.99 (0.039) 43.32 (0.031)
8 LS prices 29.73 (0.026) 34.94 (0.033) 39.81 (0.016)
8 LS pricesKO 35.56 (0.025) 44.48 (0.028) 50.16 (0.014)
8 LS pricesKO KOind 36.38 (0.027) 44.42 (0.032) 50.30 (0.020)
8 LS pricesKO KOind payoff 38.65 (0.030) 45.92 (0.017) 50.64 (0.019)
8 LS pricesKO KOind payoff 38.93 (0.031) 45.96 (0.014) 50.63 (0.018)

maxpriceKO
8 LS pricesKO KOind payoff 38.96 (0.026) 46.01 (0.015) 50.65 (0.017)

maxpriceKO max2priceKO
8 LS pricesKO payoff 39.13 (0.026) 45.83 (0.014) 50.19 (0.013)
8 LS pricesKO prices2KO KOind payoff 39.37 (0.025) 46.27 (0.011) 50.78 (0.016)

8 Tree payoff time 40.73 (0.014) 47.74 (0.025) 52.30 (0.013)
8 Tree prices 32.11 (0.170) 39.28 (0.318) 44.34 (0.177)
8 Tree prices payoff 33.98 (0.033) 43.36 (0.021) 50.16 (0.015)
8 Tree prices time 36.14 (0.172) 37.78 (0.334) 40.17 (0.231)
8 Tree prices time payoff 40.73 (0.014) 47.74 (0.025) 52.30 (0.014)
8 Tree prices time payoff KOind 40.73 (0.014) 47.74 (0.025) 52.30 (0.014)

16 LS one 34.45 (0.020) 39.00 (0.024) 43.47 (0.017)
16 LS payoff time 41.39 (0.042) 42.94 (0.037) 44.84 (0.025)
16 LS prices 34.41 (0.017) 38.82 (0.025) 43.30 (0.019)
16 LS pricesKO 44.41 (0.027) 50.02 (0.010) 52.94 (0.016)
16 LS pricesKO KOind 44.24 (0.024) 50.35 (0.019) 53.47 (0.015)
16 LS pricesKO KOind payoff 45.64 (0.021) 50.54 (0.012) 53.21 (0.013)
16 LS pricesKO KOind payoff 45.72 (0.024) 50.54 (0.012) 53.20 (0.014)

maxpriceKO
16 LS pricesKO KOind payoff 45.76 (0.020) 50.55 (0.012) 53.20 (0.015)

maxpriceKO max2priceKO
16 LS pricesKO payoff 45.48 (0.017) 49.95 (0.011) 52.59 (0.011)
16 LS pricesKO prices2KO KOind payoff 45.73 (0.019) 50.44 (0.011) 53.17 (0.013)

16 Tree payoff time 47.50 (0.026) 52.25 (0.012) 54.91 (0.010)
16 Tree prices 34.95 (0.128) 39.89 (0.127) 42.47 (0.070)
16 Tree prices payoff 42.62 (0.018) 50.05 (0.022) 54.19 (0.014)
16 Tree prices time 35.21 (0.122) 38.94 (0.120) 41.96 (0.199)
16 Tree prices time payoff 47.50 (0.026) 52.25 (0.012) 54.90 (0.010)
16 Tree prices time payoff KOind 47.50 (0.026) 52.25 (0.012) 54.90 (0.010)
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EC.2.4. Timing results for n∈ {4,16} and ρ̄= 0
Table EC.7 reports the computation time for the tree and Longstaff-Schwartz policies for n∈ {4,16}
and p̄∈ {90,100,110}, for the uncorrelated (ρ̄= 0) case. The computation times are averaged over
the ten replications for each combination of n and p̄.

Table EC.7 Comparison of estimation time between Longstaff-Schwartz, pathwise optimization and tree
policies for n∈ {4,16} assets, for different initial prices p̄ and common correlation ρ̄= 0.

n Method State variables / Basis functions Initial Price
p̄ = 90 p̄ = 100 p̄ = 110

4 LS one 1.3 (0.1) 1.3 (0.1) 1.3 (0.0)
4 LS prices 1.3 (0.1) 1.2 (0.1) 1.2 (0.0)
4 LS pricesKO 1.6 (0.1) 1.6 (0.1) 1.4 (0.1)
4 LS pricesKO KOind 1.7 (0.2) 1.9 (0.2) 1.5 (0.2)
4 LS pricesKO KOind payoff 1.7 (0.1) 1.7 (0.1) 1.5 (0.2)
4 LS pricesKO KOind payoff 2.0 (0.1) 2.2 (0.2) 2.2 (0.2)

maxpriceKO
4 LS pricesKO KOind payoff 2.0 (0.2) 1.9 (0.1) 1.9 (0.2)

maxpriceKO max2priceKO
4 LS pricesKO payoff 2.0 (0.1) 1.9 (0.1) 1.5 (0.1)
4 LS pricesKO prices2KO KOind payoff 3.2 (0.3) 4.0 (0.3) 3.2 (0.2)

4 PO prices 25.9 (0.8) 27.6 (0.9) 27.4 (1.1)
4 PO pricesKO KOind payoff 65.0 (5.0) 79.7 (9.0) 60.9 (3.7)
4 PO pricesKO KOind payoff 86.0 (4.3) 89.9 (4.9) 82.3 (4.2)

maxpriceKO max2priceKO
4 PO pricesKO prices2KO KOind payoff 165.9 (10.1) 157.5 (7.2) 125.8 (4.4)

4 Tree payoff time 10.8 (1.5) 6.4 (0.6) 4.9 (0.4)
4 Tree prices 22.3 (2.1) 39.2 (4.6) 30.8 (2.4)
4 Tree prices payoff 4.3 (0.5) 3.1 (0.3) 4.0 (0.4)
4 Tree prices time 96.1 (7.3) 141.8 (21.9) 75.9 (10.6)
4 Tree prices time payoff 18.6 (2.8) 11.9 (1.5) 8.4 (0.6)
4 Tree prices time payoff KOind 19.6 (2.0) 11.5 (0.8) 9.4 (1.1)

16 LS one 1.1 (0.0) 1.1 (0.0) 1.1 (0.0)
16 LS prices 2.1 (0.0) 2.1 (0.0) 2.0 (0.0)
16 LS pricesKO 2.4 (0.2) 2.1 (0.2) 2.3 (0.2)
16 LS pricesKO KOind 2.2 (0.1) 2.4 (0.2) 2.1 (0.1)
16 LS pricesKO KOind payoff 2.2 (0.1) 1.9 (0.1) 2.3 (0.2)
16 LS pricesKO KOind payoff 2.3 (0.2) 2.2 (0.1) 1.9 (0.1)

maxpriceKO
16 LS pricesKO KOind payoff 2.2 (0.2) 2.1 (0.3) 2.1 (0.1)

maxpriceKO max2priceKO
16 LS pricesKO payoff 1.9 (0.2) 2.0 (0.2) 2.1 (0.2)
16 LS pricesKO prices2KO KOind payoff 36.0 (1.8) 35.7 (1.8) 33.5 (1.0)

16 PO prices 59.4 (0.9) 59.4 (1.7) 53.5 (1.3)
16 PO pricesKO KOind payoff 114.7 (6.0) 85.6 (4.3) 60.6 (2.0)
16 PO pricesKO KOind payoff 96.6 (2.9) 85.2 (3.2) 67.3 (2.9)

maxpriceKO max2priceKO

16 Tree payoff time 4.0 (0.1) 3.5 (0.1) 2.2 (0.1)
16 Tree prices 281.1 (11.3) 260.8 (8.4) 202.9 (4.1)
16 Tree prices payoff 10.0 (0.1) 9.4 (0.2) 9.1 (0.2)
16 Tree prices time 195.0 (2.2) 175.3 (3.2) 150.8 (13.6)
16 Tree prices time payoff 17.5 (0.2) 16.0 (0.3) 10.0 (0.2)
16 Tree prices time payoff KOind 17.8 (0.2) 16.0 (0.2) 10.3 (0.1)
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EC.2.5. Example of LS policy
Table EC.8 below provides an example of a policy produced by LS (namely, the regression coeffi-
cients for predicting the continuation value at each t) for the basis function architecture consisting
of pricesKO, KOind and payoff.

t rp1(t)y(t) rp2(t)y(t) rp3(t)y(t) rp4(t)y(t) rp5(t)y(t) rp6(t)y(t) rp7(t)y(t) rp8(t)y(t) ry(t) rg(t)

1 0.187 0.157 0.093 0.141 0.153 0.096 0.153 0.116 -53.234 1.244
2 0.160 0.137 0.117 0.105 0.137 0.103 0.138 0.108 -46.019 0.938
3 0.166 0.136 0.122 0.117 0.139 0.091 0.151 0.122 -49.177 0.253
4 0.163 0.126 0.130 0.113 0.137 0.091 0.151 0.132 -49.359 0.136
5 0.148 0.127 0.122 0.114 0.121 0.092 0.140 0.134 -45.788 0.223
6 0.145 0.122 0.129 0.124 0.118 0.088 0.146 0.132 -46.506 0.183
7 0.137 0.118 0.126 0.121 0.119 0.095 0.139 0.130 -45.206 0.188
8 0.131 0.114 0.123 0.117 0.115 0.096 0.132 0.130 -43.315 0.189
9 0.128 0.108 0.125 0.114 0.111 0.100 0.128 0.125 -42.122 0.178

10 0.130 0.106 0.125 0.110 0.111 0.098 0.127 0.124 -41.591 0.169
11 0.126 0.101 0.121 0.114 0.109 0.094 0.126 0.123 -40.556 0.178
12 0.118 0.096 0.121 0.108 0.108 0.095 0.121 0.114 -38.273 0.201
13 0.120 0.093 0.119 0.107 0.107 0.094 0.120 0.112 -37.695 0.208
14 0.111 0.094 0.117 0.103 0.102 0.095 0.114 0.112 -36.255 0.222
15 0.110 0.095 0.109 0.098 0.098 0.090 0.108 0.109 -34.205 0.241
16 0.107 0.092 0.106 0.097 0.096 0.089 0.107 0.107 -33.227 0.248
17 0.109 0.086 0.106 0.095 0.089 0.087 0.097 0.103 -31.397 0.267
18 0.109 0.086 0.107 0.094 0.084 0.085 0.098 0.100 -30.839 0.264
19 0.108 0.082 0.105 0.095 0.083 0.085 0.094 0.097 -29.996 0.263
20 0.102 0.075 0.101 0.098 0.082 0.084 0.092 0.096 -28.817 0.272
21 0.101 0.074 0.092 0.093 0.077 0.077 0.091 0.095 -27.092 0.291
22 0.099 0.068 0.084 0.098 0.077 0.077 0.087 0.093 -26.011 0.296
23 0.091 0.069 0.077 0.094 0.071 0.076 0.083 0.089 -23.579 0.308
24 0.088 0.062 0.083 0.090 0.066 0.073 0.072 0.087 -21.895 0.333
25 0.086 0.067 0.078 0.089 0.070 0.071 0.075 0.083 -22.130 0.332
26 0.079 0.068 0.073 0.091 0.060 0.072 0.076 0.087 -21.551 0.339
27 0.082 0.065 0.071 0.086 0.060 0.061 0.076 0.081 -19.951 0.340
28 0.079 0.064 0.069 0.081 0.056 0.060 0.076 0.076 -19.046 0.373
29 0.078 0.062 0.074 0.084 0.056 0.064 0.073 0.078 -19.757 0.354
30 0.074 0.056 0.069 0.079 0.060 0.060 0.067 0.074 -18.156 0.376
31 0.074 0.056 0.066 0.081 0.055 0.058 0.069 0.072 -18.033 0.384
32 0.068 0.051 0.059 0.075 0.056 0.059 0.069 0.065 -16.544 0.414
33 0.070 0.051 0.067 0.072 0.055 0.059 0.070 0.067 -17.626 0.402
34 0.066 0.052 0.064 0.075 0.047 0.059 0.064 0.064 -16.432 0.408
35 0.068 0.045 0.059 0.071 0.049 0.051 0.059 0.056 -14.880 0.447
36 0.062 0.047 0.059 0.066 0.058 0.057 0.056 0.058 -15.804 0.451
37 0.066 0.047 0.057 0.063 0.054 0.056 0.055 0.055 -15.697 0.457
38 0.062 0.044 0.059 0.064 0.057 0.052 0.056 0.060 -16.549 0.467
39 0.061 0.047 0.056 0.059 0.052 0.045 0.056 0.059 -16.029 0.499
40 0.063 0.042 0.056 0.063 0.047 0.044 0.052 0.062 -16.101 0.502
41 0.059 0.045 0.048 0.058 0.049 0.048 0.053 0.054 -15.502 0.511
42 0.056 0.041 0.048 0.051 0.050 0.053 0.046 0.048 -15.099 0.545
43 0.052 0.042 0.045 0.058 0.050 0.052 0.045 0.050 -15.850 0.550
44 0.053 0.039 0.046 0.050 0.049 0.041 0.047 0.037 -14.233 0.579
45 0.046 0.038 0.039 0.042 0.041 0.039 0.033 0.040 -11.716 0.603
46 0.050 0.032 0.043 0.042 0.045 0.037 0.039 0.041 -13.478 0.613
47 0.039 0.034 0.039 0.039 0.041 0.038 0.036 0.036 -12.441 0.639
48 0.040 0.034 0.036 0.036 0.027 0.034 0.026 0.023 -9.532 0.652
49 0.031 0.025 0.029 0.028 0.033 0.040 0.033 0.029 -9.949 0.672
50 0.023 0.018 0.027 0.026 0.027 0.027 0.024 0.031 -7.687 0.716
51 0.027 0.019 0.019 0.027 0.032 0.029 0.023 0.025 -8.271 0.712
52 0.008 0.017 0.015 0.016 0.023 0.019 0.021 0.016 -4.681 0.774
53 0.011 0.014 0.019 0.011 0.008 0.014 0.009 0.016 -3.458 0.808
54 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table EC.8 Example of LS regression coefficients for n= 8, with pricesKO, KOind and payoff basis functions.
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EC.2.6. Additional S&P500 results
In this section, we provide additional results for our experiments calibrated with real S&P500
stock data. Table EC.9 and EC.10 report the results for interest rates of r = 0.10 and r = 0.02,
respectively. Table EC.11 reports the stocks comprising each of the ten instances in the two time
periods.

Period Instance LS - 1st O. LS - 2nd O. PO - 1st O. PO - 2nd O. Tree

2007 – 2017 1 87.87 (0.058) 89.99 (0.048) 84.33 (0.087) 91.39 (0.038) 92.68 (0.060)
2 89.52 (0.063) 91.50 (0.034) 85.85 (0.068) 92.87 (0.045) 94.21 (0.077)
3 92.65 (0.062) 95.59 (0.056) 89.31 (0.105) 97.01 (0.051) 98.61 (0.051)
4 77.20 (0.035) 79.12 (0.054) 73.92 (0.093) 80.37 (0.030) 81.33 (0.073)
5 88.17 (0.049) 90.20 (0.056) 84.34 (0.049) 91.48 (0.039) 91.85 (0.095)
6 90.01 (0.071) 92.43 (0.049) 85.08 (0.099) 93.97 (0.069) 95.55 (0.062)
7 73.27 (0.057) 74.95 (0.053) 69.56 (0.070) 76.14 (0.054) 76.91 (0.076)
8 90.42 (0.038) 92.14 (0.046) 87.72 (0.077) 93.40 (0.047) 94.42 (0.058)
9 77.12 (0.079) 79.01 (0.080) 72.63 (0.055) 80.19 (0.083) 80.11 (0.101)
10 80.10 (0.060) 81.86 (0.048) 76.03 (0.081) 83.02 (0.046) 83.34 (0.146)

2017 1 135.95 (0.022) 138.82 (0.029) 140.43 (0.018) 141.39 (0.018) 144.86 (0.044)
2 128.69 (0.052) 131.57 (0.040) 132.26 (0.080) 133.83 (0.040) 136.59 (0.165)
3 133.78 (0.035) 136.62 (0.023) 138.00 (0.035) 139.35 (0.016) 142.36 (0.133)
4 140.97 (0.037) 146.22 (0.037) 144.96 (0.024) 147.30 (0.032) 150.69 (0.028)
5 132.29 (0.062) 135.41 (0.031) 136.24 (0.031) 136.92 (0.026) 140.12 (0.030)
6 119.90 (0.044) 123.82 (0.030) 120.63 (0.051) 125.35 (0.035) 125.36 (0.184)
7 145.09 (0.033) 152.09 (0.023) 150.09 (0.021) 153.73 (0.020) 159.95 (0.013)
8 143.96 (0.024) 147.53 (0.042) 147.79 (0.018) 149.31 (0.035) 153.60 (0.025)
9 137.66 (0.049) 140.07 (0.038) 140.75 (0.042) 141.49 (0.039) 143.30 (0.064)
10 129.91 (0.057) 132.76 (0.037) 133.75 (0.033) 134.91 (0.020) 137.70 (0.138)

Table EC.9 Comparison of LS, PO and tree policies using realistically calibrated max-call option instances, with
interest rate r= 0.10. Values shown are averages over ten replications, with standard errors in parentheses; bold is
used to indicate the best method for each instance in each period. The terms “1st. O.” and “2nd. O.” indicate

the first-order basis function architecture (pricesKO, payoff, KOind) and the second-order basis function
architecture (pricesKO, prices2KO, payoff, KOind).
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Period Instance LS - 1st O. LS - 2nd O. PO - 1st O. PO - 2nd O. Tree

2007 – 2017 1 96.50 (0.067) 99.39 (0.040) 90.81 (0.102) 100.90 (0.042) 102.50 (0.062)
2 99.14 (0.088) 102.00 (0.106) 93.15 (0.097) 103.51 (0.112) 105.14 (0.142)
3 102.54 (0.077) 106.33 (0.076) 96.74 (0.084) 107.68 (0.061) 109.62 (0.080)
4 84.81 (0.071) 87.66 (0.064) 79.61 (0.076) 89.03 (0.054) 90.21 (0.108)
5 97.69 (0.058) 100.65 (0.041) 91.79 (0.070) 101.96 (0.044) 102.42 (0.109)
6 99.87 (0.080) 103.21 (0.050) 92.30 (0.121) 104.82 (0.035) 106.87 (0.060)
7 82.32 (0.052) 84.89 (0.065) 76.24 (0.097) 86.08 (0.053) 87.20 (0.100)
8 100.01 (0.057) 102.42 (0.039) 95.45 (0.104) 103.66 (0.063) 104.99 (0.096)
9 86.68 (0.059) 89.53 (0.035) 79.76 (0.074) 90.68 (0.036) 91.45 (0.130)
10 90.14 (0.100) 92.71 (0.066) 83.74 (0.076) 93.82 (0.047) 94.85 (0.091)

2017 1 153.23 (0.065) 156.41 (0.048) 158.24 (0.037) 159.25 (0.034) 162.94 (0.065)
2 145.61 (0.046) 149.02 (0.039) 149.40 (0.062) 151.48 (0.033) 154.48 (0.210)
3 151.82 (0.055) 155.12 (0.024) 156.62 (0.041) 158.22 (0.030) 161.70 (0.218)
4 151.60 (0.047) 156.91 (0.033) 155.65 (0.035) 158.02 (0.047) 161.55 (0.037)
5 147.47 (0.034) 150.76 (0.029) 151.75 (0.030) 152.28 (0.039) 155.68 (0.052)
6 136.63 (0.064) 141.47 (0.065) 136.42 (0.094) 143.17 (0.063) 143.85 (0.123)
7 159.41 (0.040) 167.23 (0.025) 165.02 (0.027) 169.07 (0.026) 175.90 (0.026)
8 155.62 (0.041) 159.29 (0.040) 159.67 (0.024) 161.21 (0.027) 165.81 (0.033)
9 151.08 (0.035) 153.61 (0.024) 154.42 (0.040) 155.12 (0.031) 156.87 (0.061)
10 147.32 (0.039) 150.54 (0.040) 151.47 (0.053) 152.79 (0.033) 156.32 (0.189)

Table EC.10 Comparison of LS, PO and tree policies using realistically calibrated max-call option instances,
with interest rate r= 0.02. Values shown are averages over ten replications, with standard errors in parentheses;
bold is used to indicate the best method for each instance in each period. The terms “1st. O.” and “2nd. O.”

indicate the first-order basis function architecture (pricesKO, payoff, KOind) and the second-order basis function
architecture (pricesKO, prices2KO, payoff, KOind).

Period Instance Stocks

2017 1 DE, AVGO, FFIV, UDR, PIR, INFO, CL, IDXX
2 GILD, AOS, GPN, HSIC, CMG, EQR, AVGO, HCA
3 IBM, RMD, WHR, PNC, ROST, A, HCP, MTD
4 UDR, XOM, INTC, NCLH, CTSH, TTWO, APD, AGN
5 VIAB, ILMN, CCL, DTE, RF, CMA, EW, NDAQ
6 DGX, JCI, AET, LB, FIS, MDLZ, HES, BBT
7 BA, TAP, ZBH, IBM, MCD, APD, TEL, VRSN
8 BIIB, WYNN, NFX, ALXN, RMD, PYPL, CNP, BWA
9 XRAY, CMCSA, RF, WMT, MU, TMK, INTC, BEN
10 STI, ES, SJM, DISCK, LKQ, CTAS, PVH, JPM

2007 – 2017 1 TTWO, COH, AMG, TRV, CSC, ALB, GPN, FLS
2 ITI, ALB, XRAY, MRK, AGN, GPN, RHT, BXP
3 ACN, EXPD, IFF, UTX, REGN, TRV, SBUX, AMG
4 JPM, FCX, HCP, FRT, CSX, ECL, ROK, AMG
5 RSG, ALK, STX, ORLY, ETR, MRK, AIZ, CAG
6 HRS, EQIX, ADBE, ATVI, BHI, BBT, CINF, ROST
7 RE, GLW, BLK, RHI, FE, CDNS, MSFT, ADP
8 CMT, OMC, HPQ, YUM, CL, ECL, CSC, WMB
9 BBY, EXC, NSC, AES, ADP, CB, ROP, AAP
10 MMC, EQR, OKE, JBHT, UPS, AAP, AMGN, DGX

Table EC.11 Stocks used to construct S&P500 instances.


