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EC.1. Proofs

EC.1.1. Proof of Proposition 1

This result follows directly from observations in Romeijn et al. (1992). To see this, observe that

problem (2) can be expressed as a type of doubly infinite linear optimization problem (problem

(P) in Romeijn et al. 1992) where each variable appears in finitely many constraints and each

constraint involves only finitely many variables. Note that problem (P) in Romeijn et al. (1992)

contains explicit upper bounds on all of the variables, which problem (2) does not appear to have;

however, note that the variables in problem (2), by virtue of the constraints, are upper bounded

by 1. In this way, problem (2) can be cast as problem (P) from Romeijn et al. (1992). Assumption

A of Romeijn et al. (1992) holds (that the feasible region of problem (2) is nonempty; this will

be established in the proof of Proposition 2, where we will directly construct a feasible solution

to problem (2)). Assumption B of Romeijn et al. (1992) also holds (that the objective function

is uniformly convergent on the feasible region; this holds due to the discounting in the objective

function). With these two assumptions and following the argument in Section 2 of Romeijn et al.

(1992), it follows that there exists an optimal solution to problem (2). ⇤

EC.1.2. Proof of Proposition 2

To prove this, we will construct a feasible solution to problem (2) whose objective value in (2) is

the same as J⇤(s). For each t2 {1,2, . . .}, set

x

m
ka(t) = P(sm(t) = k, ⇡

⇤(s(t)) = a)

Aa(t) = P(⇡⇤(s(t)) = a),

where {s(t)}1t=1 is the stochastic process of the system state that starts in state s= (s1, . . . , sM),

operated according to the optimal policy ⇡

⇤ that yields the optimal value function J

⇤(·). We now

verify that the solution (x,A) is indeed feasible.

For constraint (2b), we have for any m2 {1, . . . ,M}, j 2 Sm and t2 {2,3,4, . . .},
X

a2A

x

m
ja(t) =

X

a2A

P(sm(t) = j, ⇡

⇤(s(t)) = a)

= P(sm(t) = j)
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=
X

k2Sm

X

ã2A

P(sm(t) = j, s

m(t� 1) = k, ⇡

⇤(s(t� 1)) = ã)

=
X

k2Sm

X

ã2A

P(sm(t) = j | sm(t� 1) = k, ⇡

⇤(s(t� 1)) = ã) ·P(sm(t� 1) = k, ⇡

⇤(s(t� 1)) = ã)

=
X

k2Sm

X

ã2A

p

m
kja ·xm

ka(t� 1)

where the first equality follows by the definition of xm
ka(t), the second and third equalities follow by

the countable additivity of probability and the law of total probability, the fourth by conditioning

on the state and action at t� 1 and the final step by using the definition of pmkja and x

m
ka(t).

Similarly, for constraint (2c), for any a2 {1, . . . ,M} and t2 {1,2, . . .} we have

X

k2Sm

x

m
ka(t) =

X

k2Sm

P(sm(t) = k, ⇡

⇤(s(t)) = a) = P(⇡⇤(s(t)) = a) =Aa(t).

For constraint (2d), our earlier reasoning gives us that for any m2 {1, . . . ,M}, k 2 Sm,

MX

a=1

x

m
k,a =

X

a2A

P(sm(1) = k, ⇡

⇤(s(1)) = a) = P(sm(1) = k) = ↵

m
k (s).

Lastly, since x and A are defined as probabilities, it follows that

x

m
ka(t)� 0, 8 m2 {1, . . . ,M}, a2A, k 2 Sm

, t2 {1,2, . . .},
Aa(t)� 0, 8 a2A, t2 {1,2, . . .}.

This establishes that (x,A) is a feasible solution to (2). We will now verify that its objective value

is identical to J

⇤(s). By the definition of the optimal value function, we have

J

⇤(s) =E
"

1X

t=1

MX

m=1

�

t�1 · gmsm(t),⇡⇤(s(t))

#
=

1X

t=1

MX

m=1

�

t�1 ·E ⇥gmsm(t),⇡⇤(s(t))

⇤
,

where the second step follows by the monotone convergence theorem (since � and all the gmka values

are nonnegative) and the linearity of expectation. Observe now that

E[gmsm(t),⇡⇤(s(t))] =
X

k2Sm

X

a2A

g

m
ka ·P(sm(t) = k, ⇡

⇤(s(t)) = a) =
X

k2Sm

X

a2A

g

m
ka ·xm

ka(t).

We therefore have

J

⇤(s) =
1X

t=1

MX

m=1

�

t�1 ·E ⇥gmsm(t),⇡⇤(s(t))

⇤
=

1X

t=1

MX

m=1

X

k2Sm

X

a2A

�

t�1 · gmka ·xm
ka,

in other words, the value function evaluated at the starting state s is exactly the objective value

of the (x,A) solution that we constructed. Since (x,A) is a feasible solution for (2), it follows that

J

⇤(s)Z

⇤(s) which is the required result. ⇤
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EC.1.3. Proof of Proposition 3

Using the same type of reasoning that we used in the proof of Proposition 2 to show that the

objective function of the constructed solution was equal to J

⇤(s), one can show that the objective

value of the optimal fluid solution (x,A) is equal to E
hP1

t=1

PM

m=1 �
t�1 · gmsm(t),⇡(t,s(t))

i
, i.e., the

expected discounted reward when the system is operated according to the policy ⇡ and the system

starts in state s. Since J

⇤(s) is the maximum over all policies of the expected discounted reward

of the system, it follows that J

⇤(s) is an upper bound on E
hP1

t=1

PM

m=1 �
t�1 · gmsm(t),⇡(t,s(t))

i
, and

thus that J⇤(s)�Z

⇤(s). ⇤

EC.1.4. Proof of Theorem 1

Let s 2 S, and let (x(s),A(s)) be the solution of the corresponding fluid problem. To prove the

theorem, we will show that for state s, any action a with Aa(1, s)> 0 must be greedy with respect

to the optimal value function J

⇤. By standard results in dynamic programming theory (see, e.g.,

Bertsekas 1995), this is su�cient to prove that ⇡ as we have defined it is an optimal policy.

By Propositions 2 and 3, we have that Z

⇤(s) = J

⇤(s). Since (x(s),A(s)) is achievable, let ⇡̄

be the (possibly nondeterministic, nonstationary) policy that achieves it and let {s(t)}1t=1 be the

stochastic process of the system state when operated according to ⇡̄. We then have that

J

⇤(s) =Z

⇤(s)

=E
"

1X

t=1

MX

m=1

�

t�1
g

m
sm(t),⇡̄(t,s(t))

#

=
MX

m=1

E[gmsm(1),⇡̄(s(1),1)] +E
"

1X

t=2

MX

m=1

�

t�1
g

m
sm(t),⇡̄(t,s(t))

#

=
MX

m=1

E[gmsm(1),⇡̄(s(1),1)] +
X

s̃2S

E
"

1X

t=2

MX

m=1

�

t�1
g

m
sm(t),⇡̄(t,s(t)) s(2) = s̃

#
·P(s(2) = s̃)

=
MX

m=1

X

a2A

g

m
sm,aAa(1, s)+� ·

X

s̃2S

E
"

1X

t=2

MX

m=1

�

t�2
g

m
sm(t),⇡̄(t,s(t)) s(2) = s̃

#
·P(s(2) = s̃)

where the second step follows since (x(s),A(s)) is achieved by ⇡̄; the third step by breaking up

the infinite sum; the fourth step by conditioning on the second state; and the fifth step by using

the fact that Aa(1, s) = P(⇡̄(s(1),1) = a) and factoring out a �. Now observe that we must have

MX

m=1

X

a2A

g

m
sm,aAa(1, s)+� ·

X

s̃2S

E
"

1X

t=2

MX

m=1

�

t�2
g

m
sm(t),⇡̄(t,s(t)) s(2) = s̃

#
·P(s(2) = s̃)

=
MX

m=1

X

a2A

g

m
sm,aAa(1, s)+� ·

X

s̃2S

J

⇤(s̃) ·P(s(2) = s̃). (EC.1)
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This follows because the left-hand side is less than or equal to the right-hand side, which is true

because

E
"

1X

t=2

MX

m=1

�

t�2
g

m
sm(t),⇡̄(t,s(t)) s(2) = s̃

#
 J

⇤(s̃)

(here, the left-hand side is the value of running policy ⇡̄ from time 2 on at state s̃, which is clearly

at most J

⇤(s̃)). Note also that the left-hand side in equation (EC.1) cannot be strictly less than

the right-hand side, because the right-hand side value is achieved by a policy (follow ⇡̄ at t= 1,

then follow any optimal policy from t= 2 on); by our earlier manipulation, the left-hand side in

equation (EC.1) is equal to J

⇤(s), so a strict inequality would imply a policy that achieves a better

value than the optimal value. This is not possible, so equation (EC.1) must hold.

Thus, so far, we have that

J

⇤(s) =
MX

m=1

X

a2A

g

m
sm,aAa(1, s)+� ·

X

s̃2S

J

⇤(s̃) ·P(s(2) = s̃). (EC.2)

Since the components are independent, we can write P(s(2) = s̃) as

P(s(2) = s̃) =
X

a2A

Aa(1, s) ·
MY

m=1

p

m
sms̃ma

and simplify equation (EC.2) as follows:

J

⇤(s) =
MX

m=1

X

a2A

g

m
sm,aAa(1, s)+� ·

X

s̃2S

J

⇤(s̃) ·
 
X

a2A

Aa(1, s) ·
MY

m=1

p

m
sms̃ma

!

=
X

a2A

Aa(1, s) ·
 

MX

m=1

g

m
sm(1),a +� ·

X

s̃2S

J

⇤(s̃) ·
MY

m=1

p

m
sms̃ma

!
. (EC.3)

Now recall that J⇤(s) is the optimal value function, so it must satisfy the Bellman equation:

J

⇤(s) =max
a2A

 
MX

m=1

g

m
sm,a +� ·

X

s̃2S

J

⇤(s̃) ·
MY

m=1

p

m
sms̃ma

!
.

Given these two expressions, it must be that for any ā with Aā(1, s)> 0, we have

MX

m=1

g

m
sm(1),ā +� ·

X

s̃2S

J

⇤(s̃) ·
MY

m=1

p

m
sms̃mā =max

a2A

 
MX

m=1

g

m
sm,a +� ·

X

s̃2S

J

⇤(s̃) ·
MY

m=1

p

m
sms̃ma

!
;

i.e., that ā is an action that is greedy with respect to the optimal value function J

⇤. This must

be true; by the definition of the maximum, the right-hand side is clearly greater than or equal to

the left (this is true for any ā2A, not only those with Aā(1, s)> 0). It cannot be strictly greater,

because then equation (EC.3) could not hold (the right-hand side in (EC.3) would have to be

strictly less than J

⇤(s), as the Aa(1, s) values are nonnegative and sum to one).

Finally, note that the action a= argmaxā2AAā(1, s) clearly satisfies Aa(1, s)> 0, since the Aa(t)

variables are nonnegative and have unit sum. Thus, the action a = argmaxā2AAā(1, s) must be

greedy with respect to the optimal value function. This establishes that the policy ⇡, as defined in

the statement of Theorem 1, must be an optimal policy, which is the required result. ⇤
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EC.1.5. Proof of Proposition 4

EC.1.5.1. Proof of Part (a) To prove (a), we will define solution to problem (3) that (i)

is feasible for problem (3) and (ii) achieves an objective value in (3) that is equal to J

⇤(s). Since

Z

⇤
T (s) is the optimal value of problem (3) and our constructed feasible solution achieves a value of

J

⇤(s), it will follow that J⇤(s)Z

⇤
T (s).

Let ⇡⇤ be the optimal policy that solves problem (1) and let us consider the following solution

for problem (3):

x

m
ka(t) = P(sm(t) = k, ⇡

⇤(s(t)) = a), 8 t2 {1, . . . , T},
Aa(t) = P(⇡⇤(s(t)) = a), 8 t2 {1, . . . , T},

x

m
ka(T +1) =

1X

t=T+1

�

t�(T+1) ·P(sm(t) = k, ⇡

⇤(s(t)) = a),

Aa(T +1) =
1X

t=T+1

�

t�(T+1) ·P(⇡⇤(s(t)) = a),

where {s(t)}1t=1 is the stochastic process of the complete system that begins in state s at t= 1 and

is operated according to policy ⇡

⇤.

We first need to show that the proposed (x,A) is feasible. The same steps used in the proof of

Proposition 2 can be used to verify that constraints (3b), (3d) (for t 2 {1, . . . , T}) and (3e) hold.

To verify that constraint (3c) is satisfied, we apply similar reasoning as for constraint (3b), but in

a long-run discounted way:

X

a2A

x

m
ja(T +1) =

X

a2A

1X

t=T+1

�

t�(T+1) ·P(sm(t) = j, ⇡

⇤(s(t)) = a)

=
1X

t=T+1

�

t�(T+1)
X

k2Sm

X

a2A

P(sm(t) = j | sm(t� 1) = k, ⇡

⇤(s(t)) = a)

·P(sm(t� 1) = k, ⇡

⇤(s(t)) = a)

=
1X

t=T+1

�

t�(T+1)
X

k2Sm

X

a2A

p

m
kja ·P(sm(t� 1) = k, ⇡

⇤(s(t� 1)) = a)

=
X

k2Sm

X

a2A

p

m
kja ·P(sm(T ) = k, ⇡

⇤(s(T )) = a)

+� ·
1X

t=T+2

�

t�(T+2)
X

k2Sm

X

a2A

p

m
kja ·P(sm(t� 1) = k, ⇡

⇤(s(t� 1)) = a)

=
X

k2Sm

X

a2A

p

m
kja ·P(sm(T ) = k, ⇡

⇤(s(T )) = a)

+� ·
X

k2Sm

X

a2A

p

m
kja

"
1X

t=T+1

�

t�(T+1) ·P(sm(t) = k, ⇡

⇤(s(t)) = a)

#
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=
X

k2Sm

X

a2A

p

m
kja ·xm

ka(T )+� ·
X

k2Sm

X

a2A

p

m
kjax

m
ka(T +1).

To verify constraint (3d) for t= T +1, observe that

X

k2Sm

x

m
ka(T +1) =

X

k2Sm

1X

t=T+1

�

t�(T+1) ·P(sm(t) = k, ⇡

⇤(s(t)) = a)

=
1X

t=T+1

�

t�(T+1)
X

k2Sm

P(sm(t) = k, ⇡

⇤(s(t)) = a)

=
1X

t=T+1

�

t�(T+1) ·P(⇡⇤(s(t)) = a)

=Aa(T +1).

Lastly, by our construction of x and A, it is clear that both are nonnegative, satisfying the

non-negativity constraints of problem (3).

Now, let us consider the objective value of (x,A); we have

E
"

1X

t=1

MX

m=1

�

t�1
g

m
sm(t),⇡⇤(s(t))

#
=E

"
TX

t=1

MX

m=1

�

t�1
g

m
sm(t),⇡⇤(s(t))

#
+�

T+1 ·E
"

1X

t=T+1

MX

m=1

�

t�(T+1)
g

m
sm(t),⇡⇤(s(t))

#

=
TX

t=1

MX

m=1

E
⇥
g

m
sm(t),⇡⇤(s(t))

⇤
+�

T+1

1X

t=T+1

MX

m=1

�

t�(T+1)E
⇥
g

m
sm(t),⇡⇤(s(t))

⇤

=
TX

t=1

MX

m=1

�

t�1

 
X

k2Sm

X

a2A

g

m
ka ·P(sm(t) = k, ⇡

⇤(s(t)) = a)

!

+�

T+1

1X

t=T+1

�

t�(T+1)

 
X

k2Sm

X

a2A

g

m
ka ·P(sm(t) = k, ⇡

⇤(s(t)) = a)

!

=
TX

t=1

MX

m=1

X

k2Sm

X

a2A

�

t�1
g

m
kax

m
ka(t)

+�

T+1
X

k2Sm

X

a2A

g

m
ka

 
1X

t=T+1

�

t�(T+1) ·P(sm(t) = k, ⇡

⇤(s(t)) = a)

!

=
T+1X

t=1

MX

m=1

X

k2Sm

X

a2A

�

t�1
g

m
kax

m
ka(t)

i.e., the objective value of the (x,A) solution is identical to the optimal expected discounted value

E[
P1

t=1

PM

m=1 �
t�1

g

m
sm(t),⇡⇤(s(t))], which is exactly J

⇤(s). Since (x,A) is feasible, it follows that this

objective value is less than Z

⇤
T (s), which establishes that J⇤(s)Z

⇤
T (s) and concludes the proof of

part (a) of the Theorem. ⇤

EC.1.5.2. Proof of Part (b) To prove (b), we will use the optimal solution of problem (3)

with a horizon of T + 1 to construct a solution for problem (3) with a horizon of T that (i) is
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feasible for problem (3) with T and (ii) achieves an objective value of Z⇤
T+1(s) in problem (3). As

in part (a) of the theorem, it will then follow that Z⇤
T (s)�Z

⇤
T+1(s).

Let (x̄, Ā) be the optimal solution of problem (3) with horizon T +1. Define the solution (x,A)

to problem (3) with horizon T as follows:

x

m
ka(t) = x̄

m
ka(t), 8t2 {1, . . . , T},

x

m
ka(T +1) = x̄

m
ka(T +1)+� · x̄m

ka(T +2),

Aa(t) = Āa(t), 8t2 {1, . . . , T},
Aa(T +1) = Āa(T +1)+� · Āa(T +2).

By construction, (x,A) satisfy constraints (3b), (3e), (3f) and (3g). The solution (x,A) also satisfies

constraint (3d) for t= 1 to t= T . To show that constraint (3c) holds, observe that

X

a2A

x

m
ja(T +1) =

X

a2A

x̄

m
ja(T +1)+�

X

a2A

x̄

m
ja(T +2)

=
X

a2A

X

k2Sm

p

m
kjax̄

m
ka(T )+�

 
X

k2Sm

X

a2Sm

p

m
kjax̄

m
ka(T +1)+�

X

k2Sm

X

a2A

p

m
kjax̄

m
ka(T +2)

!

=
X

a2A

X

k2Sm

p

m
kjax̄

m
ka(T )+�

X

k2Sm

X

a2Sm

p

m
kja (x̄

m
ka(T +1)+�x̄

m
ka(T +2))

=
X

a2A

X

k2Sm

p

m
kjax

m
ka(T )+�

X

k2Sm

X

a2Sm

p

m
kjax

m
ka(T +1).

To show that constraint (3d) for t= T +1, we have that

X

k2Sm

x

m
ka(T +1) =

X

k2Sm

x̄

m
ka(T +1)+�

X

k2Sm

x̄

m
ka(T +2) = Āa(T +1)+�Āa(T +2) =Aa(T +1)

Now, consider the objective of (x,A):

T+1X

t=1

MX

m=1

X

k2Sm

X

a2A

�

t�1 · gmka ·xm
ka(t) =

TX

t=1

MX

m=1

X

k2Sm

X

a2A

�

t�1 · gmka · x̄m
ka(t)+

MX

m=1

X

k2Sm

X

a2A

�

T · gmkax̄m
ka(T +1)

+
MX

m=1

X

k2Sm

X

a2A

�

T+1
g

m
kax̄

m
ka(T +2)

=
T+2X

t=1

MX

m=1

X

k2Sm

X

a2A

�

t�1
g

m
kax̄

m
ka(t)

which, by definition of (x̄, Ā), is exactly Z

⇤
T+1(s). Since (x,A) is a feasible solution for problem (3)

with horizon T , it follows that Z⇤
T (s)�Z

⇤
T+1(s), which concludes the proof of (b). ⇤
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EC.1.6. Proof of Theorem 2

EC.1.6.1. Proof of Part (a) To prove the result, we will show that Z⇤
ALO(s)Z

⇤
ALR(s) and

Z

⇤
ALO(s)� Z

⇤
ALR(s). The inequality Z

⇤
ALO(s) Z

⇤
ALR(s) can be established by applying Corollary

1 of Adelman and Mersereau (2008), where the weakly coupled MDP is the one defined via the

transformation in Section 4.3. We thus restrict our focus to the inequality Z

⇤
ALO(s)�Z

⇤
ALR(s).

Before proceeding with the proof, let us transform problem (12) (the dual of the Lagrangian

relaxation problem (11)) for initial state s to the following equivalent problem:

maximize
z,A

MX

m=1

X

k2Sm

X

a2A

g

m
kaz

m
ka (EC.4a)

subject to
X

a2A

z

m
ja = ↵

m
k (s)+� ·

X

k2Sm

X

a2A

p

m
kjaz

m
ka, 8 m2 {1, . . . ,M}, j 2 Sm

, (EC.4b)

X

k2Sm

z

m
ka =Aa, 8 m2 {1, . . . ,M}, k 2 Sm

, (EC.4c)

z

m
ka � 0, 8 m2 {1, . . . ,M}, k 2 Sm

, a2A, (EC.4d)

Aa � 0, 8 a2A, (EC.4e)

where Aa captures the expected discounted frequency with which action a is taken from t= 1 on. It

is straightforward to see that problem (EC.4) and (12) are equivalent; we have merely reformulated

constraint (12c) in problem (12) through the Aa variables. The dual of problem (EC.4) is

minimize
V,�

MX

m=1

X

k2Sm

↵

m
k (s)V

m
k (EC.5a)

subject to V

m
k � g

m
ka +�

m
a +� ·

X

j2Sm

p

m
kjaV

m
j , 8 m2 {1, . . . ,M}, k 2 Sm

, a2A, (EC.5b)

MX

m=1

�

m
a � 0, 8 a2A. (EC.5c)

Let us now return to proving that Z⇤
ALO(s)�Z

⇤
ALR(s). Let J be an optimal solution of problem (5).

Consider the following solution to problem (EC.5):

V

m
k = J

m
k , 8 m2 {1, . . . ,M}, k 2 Sm

, a2A,

�

m
a = min

k02Sm

(
J

m
k0 � g

m
k0a �� ·

X

j2Sm

p

m
k0jaJ

m
j

)

It is straightforward to see that the proposed solution (V,�) attains the objective value Z

⇤
ALO(s)

in problem (EC.5); therefore, it only remains to prove that (V,�) is feasible for problem (EC.5).

We will first verify constraint (EC.5b). Observe that by definition of �m
a , it satisfies

�

m
a  J

m
k � g

m
ka �� ·

X

j2Sm

p

m
kjaJ

m
j ,
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for any m2 {1, . . . ,M} and k 2 Sm, which we can re-arrange to obtain

J

m
k � g

m
ka +�

m
a +� ·

X

j2Sm

p

m
kjaJ

m
j .

This last expression, by our definition of V m
k = J

m
k , is equivalent to

V

m
k � g

m
ka +�

m
a +� ·

X

j2Sm

p

m
kjaV

m
j ;

in other words, the proposed solution (V,�) satisfies constraint (EC.5b).

Next, let us verify constraint (EC.5c). For a given a2A, we have that

MX

m=1

�

m
a =

MX

m=1

min
k02Sm

(
J

m
k0 � g

m
k0a �� ·

X

j2Sm

p

m
k0jaJ

m
j

)

=min
s̄2S

(
MX

m=1

 
J

m
s̄m � g

m
s̄ma �� ·

X

j2Sm

p

m
s̄mjaJ

m
j

!)

where the first step follows by definition of �; and the second step, which is the most crucial,

follows by the fact that the per-component minimizations are independent of each other and taken

over each component’s state space, allowing them to be merged together into a single minimization

over the system state space.

Now, recall that J is a feasible solution to problem (5) and as such, it satisfies

MX

m=1

J

m
s̄m �

MX

m=1

g

m
s̄ma ��

MX

m=1

X

j2Sm

p

m
s̄mjaJ

m
j � 0,

for any state s̄ and the action a. Therefore, it follows that

MX

m=1

�

m
a =min

s̄2S

(
MX

m=1

J

m
s̄m �

MX

m=1

g

m
s̄ma �� ·

MX

m=1

X

j2Sm

p

m
s̄mjaJ

m
j

)
� 0

which establishes that (J,�) satisfies constraint (EC.5c). It now follows that (J,�) is feasible for

problem (5) and thus, that Z⇤
ALO(s)�Z

⇤
ALR(s). Since we have established both Z

⇤
ALO(s)�Z

⇤
ALR(s)

and Z

⇤
ALO(s)Z

⇤
ALR(s), it follows that Z

⇤
ALO(s) =Z

⇤
ALR(s), which concludes the proof. ⇤

EC.1.6.2. Proof of Part (b) In the proof of part (a), we essentially showed that any optimal

solution to problem (EC.5) – the dual of problem (EC.4) (which is the transformation of prob-

lem (12)) – can be used to construct an optimal solution to the ALO problem (5), and vice versa.

It only remains to show that an optimal solution of the ALR problem (11) can be used to construct

an optimal solution to problem (EC.5); this is straightforward and is omitted. ⇤
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EC.1.7. Proof of Theorem 3

EC.1.7.1. Proof of Part (a) To prove (a), we will use the optimal solution of problem (3)

with a horizon of T to construct a solution for problem (12) that is feasible for problem (12) and

achieves an objective value of Z⇤
T (s) in problem (12). It will then follow that Z⇤

T (s)Z

⇤
ALR(s).

Let (x,A) be the optimal solution of problem (3) with a horizon of T . Consider a solution to

problem (12) defined as follows:

z

m
ka =

T+1X

t=1

�

t�1 ·xm
ka(t).

To verify that constraint (12b) holds, observe that

X

a2A

z

m
ja =

X

a2A

T+1X

t=1

�

t�1 ·xm
ja(t)

=
X

a2A

x

m
ja(1)+

TX

t=2

�

t�1 ·
X

a2A

x

m
ja(t)+�

T ·
X

a2A

x

m
ja(T +1)

= ↵

m
j (s)+

TX

t=2

�

t�1 ·
X

k2Sm

X

a2A

p

m
kjax

m
ka(t� 1)+�

T (
X

k2Sm

X

a2A

p

m
kjax

m
ka(T )+�

X

k2Sm

X

a2A

p

m
kjax

m
ka(T +1))

= ↵

m
j (s)+

X

k2Sm

X

a2A

p

m
kja ·

 
T+2X

t=2

�

t�1
x

m
ka(t� 1)

!

= ↵

m
j (s)+�

X

k2Sm

X

a2A

p

m
kja ·

 
T+1X

t=1

�

t�1
x

m
ka(t)

!

= ↵

m
j (s)+�

X

k2Sm

X

a2A

p

m
kja · zmka.

To verify that constraint (12c) holds, observe that

X

k2Sm

z

m
ka =

T+1X

t=1

X

k2Sm

�

t�1
x

m
ka(t) =

T+1X

t=1

Aa(t) =
T+1X

t=1

X

k2Sm+1

�

t�1
x

m+1
ka (t) =

X

k2Sm+1

z

m+1
ka .

Finally, if we consider the objective of z in problem (12), we see that

MX

m=1

X

k2Sm

X

a2A

g

m
kaz

m
ka =

MX

m=1

X

k2Sm

X

a2A

g

m
ka�

t�1
x

m
ka(t) =

TX

t=1

MX

m=1

X

k2Sm

X

a2A

�

t�1
g

m
kax

m
ka(t),

which is exactly the objective of (x,A) in problem (3) with a horizon of T , and is equal to Z

⇤
T (s).

Since z is a feasible solution for problem (12) and Z

⇤
ALR(s) is the optimal reward, it must be that

Z

⇤
ALR(s)�Z

⇤
T (s), which concludes the proof of part (a). ⇤

EC.1.7.2. Proof of Part (b) By Theorem 2, we know that Z⇤
ALO(s) =Z

⇤
ALR(s) for all s2 S,

and by part (c) of Theorem 3, we know that Z⇤
T (s) Z

⇤
ALR(s). Therefore, it follows that Z⇤

T (s)
Z

⇤
ALO(s) for every s2 S. ⇤
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EC.1.7.3. Proof of Part (c) Part (b) asserts that Z

⇤
T (s)  Z

⇤
ALO(s), while Proposition 7

(Corollary 1 of Adelman and Mersereau 2008) asserts that Z

⇤
ALO(s) Z

⇤
CLR(s). Combining these

two inequalities, we obtain the desired result. ⇤

EC.1.8. Proof of Theorem 4

To show that Z⇤
T (s) =Z

⇤
ALR(T )(s), write the dual of the ALR(T ) problem (13):

maximize
z

T+1X

t=1

MX

m=1

X

k2Sm

X

a2A

�

t�1 · gmka · zmka(t) (EC.6a)

subject to
X

k2Sm

X

a2A

p

m
kjaz

m
ka(t) =

X

a2A

z

m
ja(t+1), 8 m2 {1, . . . ,M}, j 2 Sm

, t2 {1, . . . , T � 1},
(EC.6b)

X

k2Sm

X

a2A

p

m
kjaz

m
ka(T )+�

X

k2Sm

X

a2A

p

m
kjaz

m
ka(T +1) =

X

a2A

z

m
ja(T +1),

8 m2 {1, . . . ,M}, j 2 Sm
, (EC.6c)

X

a2A

z

m
ka(1) = ↵

m
k (s), 8 m2 {1, . . . ,M}, k 2 Sm

, (EC.6d)

X

k2Sm

z

m
ka(t) =

X

k2Sm+1

z

m+1
ka (t), 8 m2 {1, . . . ,M � 1}, t2 {1, . . . , T +1}, (EC.6e)

z

m
ka(t)� 0, 8 m2 {1, . . . ,M}, k 2 Sm

, a2A. (EC.6f)

This problem is identical to the finite fluid problem (3) (the z variables in problem (EC.6) have

the same meaning as the x variables in problem (3)); the di↵erence is that constraint (EC.6e) in

problem (EC.6) is expressed using additional variables (the Aa(t) variables) and through a di↵erent

constraint (constraint (3d)). Therefore, it holds that Z⇤
T (s) =Z

⇤
ALR(T )(s).

To show that Z⇤
T (s) =Z

⇤
ALO(T )(s), let us take the dual of the finite fluid problem (3):

minimize
V,�

MX

m=1

X

k2Sm

↵

m
k (s)V

m
k (1) (EC.7a)

subject to J

m
k (t)� g

m
ka +�

m
a (t)+�

X

j2Sm

p

m
kjaJ

m
j (t+1), 8 m2 {1, . . . ,M}, k 2 Sm

, t2 {1, . . . , T},

(EC.7b)

J

m
k (T +1)� g

m
ka +�

m
a (T +1)+�

X

j2Sm

p

m
kjaJ

m
j (T +1), 8 m2 {1, . . . ,M}, k 2 Sm

,

(EC.7c)
MX

m=1

�

m
a (t)� 0, 8 m2 {1, . . . ,M}, t2 {1, . . . , T +1}. (EC.7d)

To show that Z⇤
T (s)�Z

⇤
ALO(T )(s), let (V,�) be an optimal solution of the finite fluid dual (EC.7),

and define a solution J for ALO(T ) problem (14) as

J

m
k (t) = V

m
k (t)
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for each m 2 {1, . . . ,M}, k 2 Sm and t 2 {1, . . . , T + 1}. Now observe that for any s 2 S and

t2 {1, . . . , T}, we have

MX

m=1

J

m
sm(t) =

MX

m=1

V

m
k (t)

�
MX

m=1

 
g

m
sma +�

m
a (t)+�

X

j2Sm

p

m
smjaJ

m
j (t+1)

!

=
MX

m=1

g

m
sma +

MX

m=1

�

m
a (t)+�

MX

m=1

X

j2Sm

p

m
smjaJ

m
j (t+1)

�
MX

m=1

g

m
sma +�

MX

m=1

X

j2Sm

p

m
smjaJ

m
j (t+1)

where the first step follows by our construction of J; the second step, through constraint (EC.7b)

that (V,�) satisfies; the third step by distributing the sum; and the last step by constraint (EC.7d).

A similar argument can be used to establish that J satisfies

MX

m=1

J

m
sm(T +1)�

MX

m=1

g

m
sma +�

MX

m=1

X

j2Sm

p

m
smjaJ

m
j (T +1).

The solution J is therefore feasible for ALO(T ) problem (14); moreover, its objective value is

MX

m=1

X

k2Sm

↵

m
k (s)J

m
k (1) =

MX

m=1

X

k2Sm

↵

m
k (s)V

m
k (1)

=Z

⇤
T (s).

We therefore must have that Z⇤
T (s)�Z

⇤
ALO(T )(s).

To show that Z

⇤
T (s)  Z

⇤
ALO(T )(s), let J be an optimal solution of the ALO(T ) problem (14).

Define a solution for the finite fluid dual (EC.7) as follows:

V

m
k (t) = J

m
k (t), 8 m2 {1, . . . ,M}, k 2 Sm

,

�

m
a (t) = min

k2Sm

 
J

m
k (T +1)� g

m
ka ��

X

j2Sm

p

m
kjaJ

m
j (t+1)

!
, 8m2 {1, . . . ,M}, a2A, t2 {1, . . . , T},

�

m
a (T +1) = min

k2Sm

 
J

m
k (T +1)� g

m
ka ��

X

j2Sm

p

m
kjaJ

m
j (T +1)

!
, 8m2 {1, . . . ,M}, a2A.

Observe that by definition of �m
a (t) for t < T +1, we have that

�

m
a (t) J

m
k (t)� g

m
ka ��

X

j2Sm

p

m
kjaJ

m
j (t+1),

for any m2 {1, . . . ,M} and k 2 Sm, which we can re-arrange to obtain

J

m
k (t)� g

m
ka +�

m
a (t)+�

X

j2Sm

p

m
kjaJ

m
j (t+1),
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or equivalently

V

m
k (t)� g

m
ka +�

m
a (t)+�

X

j2Sm

p

m
kjaV

m
j (t+1).

Similarly, for T +1, we have

�

m
a (T +1) J

m
k (T +1)� g

m
ka ��

X

j2Sm

p

m
kjaJ

m
j (T +1),

which can be re-arranged to get

J

m
k (T +1)� g

m
ka +�

m
a (T +1)+�

X

j2Sm

p

m
kjaJ

m
j (T +1),

or equivalently

V

m
k (T +1)� g

m
ka +�

m
a (T +1)+�

X

j2Sm

p

m
kjaV

m
j (T +1);

this verifies constraints (EC.7b) and (EC.7c).

To verify the last constraint (EC.7d), we have for any given a2A and t2 {1, . . . , T} that

MX

m=1

�

m
a (t) =

MX

m=1

min
k2Sm

(
J

m
k (t)� g

m
ka ��

X

j2Sm

p

m
kjaJ

m
j (t+1)

)

=min
s̄2S

(
MX

m=1

 
J

m
s̄m(t)� g

m
s̄ma ��

X

j2Sm

p

m
s̄mjaJ

m
j

!)
,

where, as in the proof of part (a) of Theorem 2 (see Section EC.1.6), the order of summation and

minimization can be interchanged because the minimizations are independent of each other. Since

J is feasible for problem (14), it must be that

MX

m=1

J

m
s̄m(t)�

MX

m=1

g

m
s̄ma ��

MX

m=1

X

j2Sm

p

m
s̄mjaJ

m
j (t+1)� 0,

for all s2 S; it therefore follows that

min
s̄2S

(
MX

m=1

J

m
s̄m(t)�

MX

m=1

g

m
s̄ma ��

MX

m=1

X

j2Sm

p

m
s̄mjaJ

m
j (t+1)

)
� 0,

which establishes that
MX

m=1

�

m
a (t)� 0.

Similar steps can be used to establish that

MX

m=1

�

m
a (T +1)� 0

for a 2A. Thus, (V,�) is a feasible solution for the finite fluid dual (EC.7); it is also easy to see

that its objective value is exactly Z

⇤
ALO(T )(s). This establishes that Z

⇤
T (s)Z

⇤
ALO(T )(s).

Together with Z

⇤
T (s)�Z

⇤
ALO(T )(s), this establishes that Z

⇤
T (s) =Z

⇤
ALO(T )(s). This concludes the

proof. ⇤
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EC.1.9. Proof of Proposition 9

The proof follows by showing that Z

⇤
BNM(s)  Z

⇤
ALR(s) and Z

⇤
BNM(s) � Z

⇤
ALR(s). To do this, we

follow our approach in the other proofs of using one problem’s optimal solution to construct a

feasible solution for the other problem that has the same objective value as the first problem’s

optimal solution. The most di�cult part of the proof is deriving a suitable feasible solution for

one problem from the optimal solution of the other; verifying that the solutions are feasible is

straightforward, but somewhat laborious. In what follows, we will present several identities that

are useful in verifying feasibility and then provide the correct feasible solutions, but in the interest

of space, we will omit the verification of the solutions.

Let us derive a few properties of problems (12) and (15) that will be useful to us. First of all, notice

that for any z feasible for problem (12), for a fixed m 2 {1, . . . ,M}, by summing constraint (12b)

over all states j 2 Sm, we have

X

j2Sm

MX

a0=1

z

m
ja0 ��

X

j2Sm

X

k2Sm

MX

a=1

p

m
kjaz

m
ka =

X

j2Sm

↵

m
j (s),

which is equal to

X

j2Sm

MX

a0=1

z

m
ja0 ��

X

k2Sm

MX

a=1

 
X

j2Sm

p

m
kja

!
· zmka =

X

j2Sm

↵

m
j (s).

Since
P

j2Sm p

m
kja = 1 and

P
j2Sm ↵

m
j (s) = 1, this reduces to

X

j2Sm

MX

a0=1

z

m
ja0 ��

X

k2Sm

MX

a=1

z

m
ka = 1.

Observe that the two sums are identical; by dividing through by (1� �), we obtain the following

identity:
X

k2Sm

MX

a=1

z

m
ka =

1

1��

, 8 m2 {1, . . . ,M}. (EC.8)

Observe that by following the same steps, we can derive a similar identity for the w variables of

problem (15) using constraint (15c):

X

k2Sm

X

a02{0,1}

w

m
ka0 =

1

1��

, 8 m2 {1, . . . ,M}. (EC.9)

Lastly, notice that by combining constraint (15b) and identity (EC.9) for a fixed m 2 {1, . . . ,M},
we get that

MX

m0=1

X

k2Sm0

w

m0
k1 =

X

k2Sm

X

a2{0,1}

w

m
ka.
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Notice that both sums contain the sum
P

k2Sm w

m
k1; by subtracting it out, we obtain the following

identity:
X

m0 6=m

X

k2Sm0

w

m0
k1 =

X

k2Sm

w

m
k0, 8 m2 {1, . . . ,M}. (EC.10)

Having defined these identities, we are ready to move on with the proof.

To prove that Z⇤
ALR(s)� Z

⇤
BNM(s), suppose that w is an optimal solution to problem (15). We

will proceed in two di↵erent cases.

Case 1 of Z

⇤
ALR(s)� Z

⇤
BNM(s). Suppose that

P
j2Sm w

m
j0 > 0 for every m 2 {1, . . . ,M}. Define a

solution to problem (12) as

z

m
km =w

m
k1, 8 m2 {1, . . . ,M}, k 2 Sm

,

z

m
ka =

w

m
k0P

j2Sm w

m
j0

·
X

j2Sa

w

a
j1 8 m2 {1, . . . ,M}, a 6=m, k 2 Sm

.

It can be shown that z is feasible for problem (12) and that its objective in problem (12) is exactly

Z

⇤
BNM(s).

Case 2 of Z

⇤
ALR(s)� Z

⇤
BNM(s). In the second case, we suppose that there exists an m̃ such that

P
j2Sm w

m̃
j0 = 0. In this case, the expected discounted frequency with which we do not active bandit

m̃ when it is in any of its states is zero; intuitively, this means that we are always activating bandit

m̃.

Armed with this intuition and the above identity, let us define a solution z for problem (12) as

z

m
ka = 0, 8 m2 {1, . . . ,M}, k 2 Sm

, a 6= m̃,

z

m
km̃ =w

m
k0, 8 m 6= m̃, k 2 Sm̃

,

z

m̃
km̃ =w

m̃
k1, 8k 2 Sm̃

.

As in Case 1, it can then be shown that z is feasible for problem (12) and that its objective in

problem (12) is exactly Z

⇤
BNM(s).

This proves that Z

⇤
BNM(s)  Z

⇤
ALR(s); we now turn our attention to Z

⇤
BNM(s) � Z

⇤
ALR(s). To

prove this inequality, suppose that we have a solution z to problem (12). Define the solution w to

problem (15) as

w

m
k0 =

X

a 6=m

z

m
ka, 8 m2 {1, . . . ,M}, k 2 Sm

,

w

m
k1 = z

m
km, 8 m2 {1, . . . ,M}, k 2 Sm

.
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It can be shown that w is feasible for problem (15) and that its objective in problem (15) is exactly

Z

⇤
ALR(s).

From here, since Z

⇤
ALR(s)  Z

⇤
BNM(s) and Z

⇤
ALR(s) � Z

⇤
BNM(s), it follows that Z

⇤
ALR(s) =

Z

⇤
BNM(s), as required. ⇤

EC.2. Counterexample to show that Z

⇤(s) J

⇤(s) does not always hold

To develop the counterexample, we proceed in two steps. First, we develop a useful bound that

relates the optimal value of a truncated fluid formulation and the infinite fluid formulation (prob-

lem (2)). Then, we describe a specific problem instance where the numerical values of the optimal

DP value function and the optimal value of the finite fluid formulation, together with the bound

we just developed, allow us to conclude that Z⇤(s) J

⇤(s) does not hold.

EC.2.1. Bound

Clearly, we are not able to solve the optimization problem (2), since it is a problem with a countably

infinite number of constraints and variables. However, if we only include the decision variables and

constraints corresponding to t= 1 to t= T , and truncate the objective function to the finite sum
PT

t=1

PM

m=1

Pn

k=1

PM

a=1 �
t�1

g

m
kax

m
ka(t), we obtain a finite formulation that we are able to solve. (This

is in fact problem (3) without the T + 1 objective term that accounts for the system’s evolution

from t= T +1 on.) Let Z⇤
T,trunc(s) be the optimal value of this truncated problem. The finite-length

optimal solution (x,A) that attains this objective value can be easily extended for times t > T

(e.g., by setting A1(t) = 1 for t > T , xm
ka(t) and Aa(t) are uniquely determined for t > T ) to yield a

completed, infinite-length solution. Using this infinite-length solution, we see that

Z

⇤
T,trunc(s) =

TX

t=1

MX

m=1

nX

k=1

MX

a=1

�

t�1
g

m
kax

m
ka(t)

1X

t=1

MX

m=1

nX

k=1

MX

a=1

�

t�1
g

m
kax

m
ka(t)Z

⇤(s),

where the first step follows by the definition of Z⇤
T (s) as the optimal value of the truncated formu-

lation, the second by the fact that the value of the sum can only increase when it is extended from

a finite one to an infinite one (all gmka and x

m
ka(t) values are nonnegative), and the third by the fact

that the completed, infinite-length solution is a feasible solution to the infinite fluid formulation (2).

EC.2.2. Instance

Consider a decomposable MDP with M = 3, S1 = S2 = S3 = {1,2,3}, with the following reward

data:

g

1
1 =

2

4
3.3323
0.2765
2.2476

3

5
, g

2
2 =

2

4
2.6230
8.9540
4.5576

3

5
,g

3
3 =

2

4
2.8975
7.8568
0.8381

3

5
, (EC.11)

g

m
a = 0, 8m2 {1,2,3}, a2 {1,2,3}, a 6=m, (EC.12)
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and the following probability transition data:

p

1
1 =

2

4
0.0540 0.3790 0.5670
0.0190 0.0390 0.9420
0.3120 0.5330 0.1550

3

5
, p

2
1 =

2

4
0.8560 0 0.1440
0.1590 0.3150 0.5260
0.0320 0.8050 0.1630

3

5
, p

3
1 =

2

4
0.0740 0.9020 0.0240
0.3440 0.0200 0.6360
0.5820 0.3750 0.0430

3

5

(EC.13)

p

m
a = I, 8m2 {1,2,3}, a2 {1,2,3}, a 6=m. (EC.14)

As we will see in Section 5, this problem actually corresponds to a regular multiarmed bandit

problem with three arms.

Suppose that the discount factor is 0.9 and the initial state s is set to (3,3,1). Solving the

truncated version of problem (2) with T = 100 for initial state s, we obtain an objective value of

Z

⇤
T,trunc(s) = 57.7134, while the optimal DP value function is J⇤(s) = 57.3812. By the bound above,

we have

J

⇤(s) = 57.3812< 57.7134 =Z

⇤
T,trunc(s)Z

⇤(s),

i.e., that J⇤(s)<Z

⇤(s). This allows us to conclude that J⇤(s)�Z

⇤(s) does not always hold.

EC.3. Derivation of alternate Lagrangian relaxation

In this section, we derive the ALR formulation. The steps that we follow here are essentially

the same as those used in Adelman and Mersereau (2008) to derive the Lagrangian relaxation

formulation, applied to the specific weakly-coupled MDP that is at the heart of the ALR. For

completeness, we show the main steps of the derivation here.

The optimal value function for the true MDP of interest satisfies the following Bellman equation:

J

⇤(s) = max
(a1,...,aM )2A⇥···⇥A:

I{am=a}�I{am+1=a}=0,
8m2{1,...,M�1}, a2A

 
MX

m=1

g

m
smam +� ·

X

s̄2S

 
MY

m=1

p

m
sms̄mam

!
J

⇤(s̄)

!
. (EC.15)

In the Lagrangian relaxation approach (Hawkins 2003, Adelman and Mersereau 2008), we dualize

the action consistency constraint on the action vectors (a1
, . . . , a

M). For each constraint in the

maximization, we introduce a Lagrange multiplier �m
a 2R, and penalize the violation of the corre-

sponding (m,a) constraint in the Bellman iteration. We obtain a new value function J

�(s) which

satisfies the following modified Bellman equation:

J

�(s) = max
(a1,...,aM )2A⇥···⇥A

 
MX

m=1

g

m
smam +� ·

X

s̄2S

 
MY

m=1

p

m
sms̄mam

!
J

�(s̄)

�
M�1X

m=1

X

a2A

�

m
a (I{am = a}� I{am+1 = a})

!
(EC.16)

= max
(a1,...,aM )2A⇥···⇥A

 
MX

m=1

g

m
smam +� ·

X

s̄2S

 
MY

m=1

p

m
sms̄mam

!
J

�(s̄)
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�
M�1X

m=1

(�m
am ��

m
am+1

)

!
(EC.17)

We will show that the solution to the above Bellman equation is of the form

J

�(s) =
MX

m=1

V

m,�(sm), (EC.18)

where each V

m,� is a component-wise value function satisfying

V

m,�(sm) =max
a2A

 
g

m
sma +�

X

s̄m2Sm

p

m
sms̄mamV

m,�(s̄m)� I{m<M} ·�m
a + I{m> 1} ·�m�1

a

!

(EC.19)

To see this, we will show that the above form satisfies equation (EC.18). We have

max
(a1,...,aM )2A⇥···⇥A

 
MX

m=1

g

m
smam +� ·

X

s̄2S

 
MY

m=1

p

m
sms̄mam

! 
MX

m=1

V

m,�(s̄m)

!
�

M�1X

m=1

(�m
am ��

m
am+1

)

!

= max
(a1,...,aM )2A⇥···⇥A

 
MX

m=1

g

m
smam +� ·

MX

m=1

X

s̄m2Sm

p

m
sms̄mamV

m,�(s̄m)�
M�1X

m=1

(�m
am ��

m
am+1

)

!

=
MX

m=1

max
am2A

 
g

m
smam +�

X

s̄m2Sm

p

m
sms̄mamV

m,�(s̄m)� I{m<M} ·�m
a + I{m> 1} ·�m�1

a

!

=
MX

m=1

V

m,�(sm),

where the first equality follows by the linearity of expectation (the sum
P

s̄2S

⇣QM

m=1 p
m
sms̄mam

⌘⇣PM

m=1 V
m,�(s̄m)

⌘
can be viewed as the expectation of a sum of random

variables that correspond to each component’s value function at a random next state); the second

by the fact that the maximizations over each of the a

m variables are independent of each other;

and the third by definition of the V

m,�
k ’s.

To now derive the ALR formulation, let s be the initial state. The value of s is J

�(s) =
PM

m=1 V
m,�(sm). Each component value function V

m,�, described by the Bellman equation in equa-

tion (EC.19), can be evaluated at sm by solving the following linear optimization problem, where

� is fixed (i.e., not a decision variable):

V

m,�(sm) = minimize
V

m

X

k2Sm

↵

m
k (s)V

m
k (EC.20a)

subject to V

m
k � g

m
ka � I{m<M} ·�m

a + I{m> 1} ·�m�1
a +� ·

X

j2Sm

p

m
kjaV

m
j ,

8 k 2 Sm
, a2A. (EC.20b)
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The value J�(s) can then be expressed as the optimal value of the following optimization problem,

which combines the above component-wise optimization problems into one problem:

J

�(s) = minimize
V

MX

m=1

X

k2Sm

↵

m
k (s)V

m
k (EC.21a)

subject to V

m
k � g

m
ka � I{m<M} ·�m

a + I{m> 1} ·�m�1
a +� ·

X

j2Sm

p

m
kjaV

m
j ,

8 m2 {1, . . . ,M}, k 2 Sm
, a2A. (EC.21b)

As in Adelman and Mersereau (2008), it can be shown that the optimal value of the above problem,

which is equal to J

�(s), is an upper bound on J

⇤(s). We now seek to find the tightest such upper

bound, that is, min� J
�(s). This can be accomplished by optimizing over � as an additional decision

variable in the above optimization problem:

minimize
V,�

MX

m=1

X

k2Sm

↵

m
k (s)V

m
k (EC.22a)

subject to V

m
k � g

m
ka � I{m<M} ·�m

a + I{m> 1} ·�m�1
a +� ·

X

j2Sm

p

m
kjaV

m
j ,

8 m2 {1, . . . ,M}, k 2 Sm
, a2A. (EC.22b)

The above formulation is exactly the ALR formulation (11).


