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1. Introduction
Many real-world problems involving the control of a
stochastic system can be modeled as Markov decision pro-
cesses (MDPs). In a typical MDP, the system begins in a
certain state s in some state space S. The decision maker
selects an action a from some action space A. The system
then transitions randomly to a new state s′ with probability
pa4s1 s′5, and the decision maker garners some reward ga4s5.
Once the system is in this new state s′, the decision maker
once again selects a new action, leading to additional reward
and causing the system to transition again. In the most basic
form of the problem, the decision maker needs to make deci-
sions over an infinite horizon, and the rewards accrued over
this infinite horizon are discounted in time according to a
discount factor � ∈ 40115. The goal of the decision maker,
then, is to find a policy � that prescribes an action �4s5 for
each state s so as to maximize the expected total discounted
reward

Ɛ

[

�
∑

t=1

�t−1g�4s4t554s4t55
]

1

where s4t5 is the random variable representing the state at
time t, when the system is operated according to policy �.
In other types of problems, the decision maker may only be
making decisions over a finite time horizon; in those prob-
lems, the policy prescribing the action to take may depend

not only on the state, but also on the time at which the deci-
sion is being made.

Although problems that are represented in this form can
in principle be solved exactly with dynamic programming,
this is often practically impossible. Exact methods based on
dynamic programming require one to compute the optimal
value function J ∗, which maps states in the state space S
to the optimal expected discounted reward when the sys-
tem starts in that state. For many problems of practical
interest, the state space S is so large that operating on, or
even storing, the value function J ∗ becomes computationally
infeasible. This is what is often referred to in the dynamic
programming and MDP literature as the curse of dimension-
ality (Bellman 1961).

Where does the curse of dimensionality come from? That
is, why is it that practical MDPs often have prohibitively
large state spaces? For many practical problems, the system
that is being modeled is often not a single, atomic system,
but rather consists of a collection of smaller sub-systems or
components. Mathematically, consider a system consisting
of M components, where each component m ∈ 811 0 0 0 1M9
is endowed with a state sm from an ambient state space Sm.
To represent the complete system, we must represent the
state s as an M-tuple of the component states (i.e., s =

4s11 0 0 0 1 sM5), and as a result, the state space of the complete
system becomes the Cartesian product of the component
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state spaces (i.e., S = S1 × · · · × SM ). As the number of
components M grows, the size of the state space of the com-
plete system grows in an exponential fashion.

At the same time, the data of such systems are often not
presented to us in terms of the complete system state. The
probabilistic dynamics induced by each candidate action in
A may be naturally expressed in terms of individual com-
ponents or small combinations (e.g., pairs) of components.
Similarly, the reward structure of the problem does not need
to be specified in terms of the complete system state but can
be specified in terms of the component states. In the remain-
der of the paper, we will refer to MDPs where the probabilis-
tic dynamics and reward structure can be expressed in terms
of the component states as decomposable MDPs.

Many practically relevant MDPs can be modeled as
decomposable MDPs. One major class of MDPs that falls
into the decomposable MDP framework is the class of mul-
tiarmed bandit problems. In the multiarmed bandit problem,
the decision maker is presented with M machines (“ban-
dits”), where each bandit m is initially in some state sm from
its state space Sm. At each point in time, one of the bandits
may be activated, in which case the chosen bandit changes
state probabilistically and the decision maker earns some
reward. The problem is then to decide, at each point in time,
given the state of all of the bandits, which bandit to acti-
vate so as to maximize the total expected long term reward.
In the basic form of the problem—the regular multiarmed
bandit problem—when a bandit m is activated, the inactive
bandits do not change state. In the restless bandit problem,
the inactive bandits can also change state passively and the
decision maker may earn a passive reward from bandits that
are not activated. The multiarmed bandit, by its definition,
is a decomposable MDP: the state space of the ensemble of
bandits is the product of the state spaces of the individual
bandits, and the probability transition structure is specified
at the level of each bandit.

In this paper, we propose a new fluid optimization ap-
proach for approximately solving decomposable MDPs. The
centerpiece of our approach is a linear optimization (LO)
model in which, in its most basic form, the decision vari-
ables represent the marginal probabilities of each individ-
ual component being in each of its possible states and the
action taken at a particular time, and the main constraints
are conservation constraints that govern how these marginal
probabilities “flow” from component states at time t to new
states at t + 1 under different action (hence the name fluid).
The idea of the formulation is to approximate the behavior of
the system when it is controlled optimally. The formulation
achieves this in a tractable way by exploiting the decompos-
able nature of the problem: rather than modeling the precise
transition behavior of the system at the level of tuples of
component states, it models the macroscopic transitions of
the system at the level of the individual components and
their states. The optimal solution of the formulation, when it
includes constraints that model the complete system starting
in a certain state, can be used to derive an action for the

state. In this way, the formulation leads naturally to a simple
heuristic for solving the MDP.

Our contributions are as follows:
1. We propose a novel LO formulation for approximately

modeling decomposable MDPs and an associated heuristic
for solving the MDP. The formulation is tractable since the
number of variables scales linearly with the number of indi-
vidual components, as opposed to the exponential scaling
that is characteristic of dynamic programming. We show that
this formulation provides an upper bound on the optimal
value of the MDP and provide idealized conditions under
which our fluid formulation-based heuristic is optimal. We
discuss how this basic, “first-order” formulation that mod-
els individual components can be extended to “higher-order”
formulations that model combinations of components (e.g.,
a second-order formulation that models transitions of pairs
of components). We also discuss how the basic formulation
can be extended to address finite-horizon, time-dependent
problems.

2. We theoretically compare our fluid formulation to three
alternative proposals. In particular, we show that a finite
version of our formulation that models the evolution of the
system over a horizon of T periods provides provably tighter
bounds on the optimal value function than three state-of-the-
art formulations: the approximate linear optimization (ALO)
formulation of de Farias and Van Roy (2003), the classi-
cal Lagrangian relaxation (CLR) formulation of Adelman
and Mersereau (2008), and an alternate Lagrangian relax-
ation (ALR) that involves relaxing an action consistency
constraint. The latter alternate Lagrangian relaxation is a
novel formulation that is equivalent to the ALO and is of
independent interest. Moreover, the fluid bound is nonin-
creasing with the time horizon T . Letting J ∗4s5 denote the
optimal value function at the state s, Z∗

T 4s5 denote the objec-
tive value of the fluid formulation with horizon T at s, and
Z∗

ALO4s5, Z
∗
ALR4s5, and Z∗

CLR4s5 denote the objective values
of the ALO, ALR and CLR formulations at s, respectively,
our results can be summarized in the following statement,
which holds for any T ∈ 81121 0 0 09:

J ∗4s5 ¶ Z∗

T 4s5¶ · · ·¶Z∗

24s5

¶ Z∗

14s5¶ Z∗

ALO4s5=Z∗

ALR4s5¶Z∗

CLR4s50

In this way, our paper contributes to the overall understand-
ing of the fluid approach and all previous proposals in a
unified framework.

3. We demonstrate the effectiveness of our approach com-
putationally on multiarmed bandit problems. We consider
regular bandit problems (inactive bandits do not change
state) and restless bandit problems (inactive bandits may
change state). We show that bounds from our approach
can be substantially tighter than those from state-of-the-art
approaches, and that the performance of our fluid policy is
near optimal and outperforms policies from state-of-the-art
approaches.
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The rest of this paper is organized as follows. In Section 2,
we review the extant body of research related to this paper.
In Section 3, we define the decomposable MDP and present
our infinite LO fluid formulation. We prove a number of
properties of this formulation, and motivated by the proper-
ties of this infinite LO formulation, we present a heuristic
policy for generating actions at each decision epoch based
on a finite version of this formulation. In Section 4, we
compare the finite fluid formulation to the ALO formulation
of de Farias and Van Roy (2003), the classical Lagrangian
relaxation approach of Adelman and Mersereau (2008), and
the alternate Lagrangian relaxation. In Section 5, we apply
our framework to the multiarmed bandit problem and pro-
vide computational evidence for the strength of our approach
in this class of problems. Finally, in Section 6, we state the
conclusions of our study and offer some directions for future
work.

2. Literature Review
MDPs have a long history, tracing back to the work of
Bellman (1957) in the 1950s. The importance and signifi-
cance of this area in the field of operations research is under-
scored both by the number of research papers that have been
written in this area, as well as the numerous books written
on the subject (examples include Howard 1971, Heyman and
Sobel 1984, Puterman 1994, and Bertsekas 1995).

While MDPs can be solved exactly through methods such
as value iteration, policy iteration, and the LO approach (see,
e.g., Puterman 1994), these approaches become intractable
in high-dimensional problems. As a result, much research
has been conducted in the area of approximate dynamic
programming (ADP). The interested reader is referred to
Van Roy (2002) for a brief overview, and to Bertsekas and
Tsitsiklis (1996) and Powell (2007) for more comprehen-
sive treatments of the topic. The goal of ADP is to find an
approximation to the true value function. By then applying
the policy that is greedy with respect to this approximate
value function, one hopes to achieve performance that is
close to that of the true optimal policy.

Within the ADP literature, our work is most closely related
to the approximate linear optimization (ALO) approach of
de Farias and Van Roy (2003) and the Lagrangian relax-
ation approach of Adelman and Mersereau (2008). In the
ALO approach to ADP, one approximates the value function
as the weighted sum of a collection of basis functions and
solves the LO formulation of the MDP with this approxi-
mate value function in place of the true value function. By
doing so, the number of variables in the problem is signifi-
cantly reduced, leading to a more tractable problem. In many
applications, one can exploit the decomposable nature of the
problem in selecting a basis function architecture: for exam-
ple, in de Farias and Van Roy (2003) the approach is applied
to a queueing control example, where the value function
is approximated as a linear combination of all polynomials
up to degree 2 of the individual queue lengths of the sys-
tem. On the other hand, Hawkins (2003) and Adelman and

Mersereau (2008) study MDPs where the problem can be
viewed as a collection of subproblems, and the action that
can be taken in each subproblem is constrained by a global
linking constraint that couples the subproblems together.
By dualizing the linking constraint, the complete problem
decomposes along the subproblems, leading to an optimiza-
tion problem that is significantly simpler than the exact LO
model of the MDP. By solving this optimization problem,
one obtains an upper bound on the optimal value at a given
state, as well as a value function approximation.

Our fluid approach is closely related to the Lagrangian
relaxation approach and builds on it in two important ways.
First, we delineate two different types of Lagrangian relax-
ations: the “classical” Lagrangian relaxation, where the
action space is implicitly defined by a coupling constraint,
and a novel, “alternate” Lagrangian relaxation where the
components are coupled by an “action consistency” con-
straint (the action taken in each component must be the
same). Our formulation is not related to the former clas-
sical formulation, but to the latter alternate formulation.
This alternate Lagrangian relaxation is significant because
it extends the scope of the Lagrangian relaxation approach
to problems that do not have a decomposable system action
space. Furthermore, it turns out that this alternate Lagrangian
relaxation is actually equivalent to the ALO: the two models
lead to the same bound on the true optimal value function and
the same value function approximation (Theorem 2). In con-
trast, for the classical Lagrangian relaxation, one can only
show that the ALO bound is at least as tight (Adelman and
Mersereau 2008), and one can find simple examples where
the Lagrangian bound can be significantly worse than the
ALO bound.

The second way in which our approach builds on the
Lagrangian relaxation approach is through its view of time.
Our formulation first models the state of each component
separately at each decision epoch over a finite horizon
before aggregating them over the remaining infinite horizon,
whereas the formulation of Adelman and Mersereau (2008)
aggregates them over the entire infinite horizon. While this
may appear to be a superficial difference, it turns out to
be rather significant because it allows us to prove that the
fluid bound is at least as tight as the classical and alternate
Lagrangian relaxation bounds (parts (a) and (c) of Theo-
rem 3). As we will see in Section 5, the difference in the
bounds and the associated performance can be considerable.

With regard to the ALO, the ALO and our fluid model dif-
fer in tractability. In particular, the size (number of variables
and number of constraints) of our fluid model scales linearly
in the number of components and actions. In contrast, in the
ALO, while the number of variables may scale linearly in
the number of components, the number of constraints still
scales linearly with the number of system states, as in the
exact LO model of the MDP. This necessitates the use of
additional techniques to solve the problem, such as con-
straint sampling (de Farias and Van Roy 2004). Moreover, as
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stated above, it turns out that when one uses a component-
wise approximation architecture for the ALO, it is equivalent
to the alternate Lagrangian relaxation formulation described
above. Due to this equivalence, we are able to assert that
our fluid model leads to better bounds than the ALO, and
through our numerical results, that our fluid approach leads
to better performance than the ALO approach.

Outside of ADP, many approximate approaches to
stochastic control problems also exploit decomposability.
One salient example of this is the performance region
approach to stochastic scheduling. In this approach, one con-
siders a vector of performance measures of the complete
system (for an overview, see Bertsimas 1995). Using the
probabilistic dynamics of the system, one can then derive
conservation laws that constrain the values this vector of
performance measures may take. The resulting set is the
performance region of the system, over which one can
solve an optimization problem to find the best vector of
performance measures. It turns out that typically this vec-
tor of performance measures is achieved by simple poli-
cies or a randomization of simple policies. This approach
was introduced by Coffman and Mitrani (1980) for multi-
class scheduling in a single-server M/M/1 queue and later
extended by Federgruen and Groenevelt (1988) and Shan-
thikumar and Yao (1992) to more general queueing systems.
Bertsimas and Niño-Mora (1996) unified this framework
and extended it beyond queueing control problems to such
problems as the multiarmed bandit problem and branching
bandits. Bertsimas and Niño-Mora (2000) later considered a
performance region formulation for the restless bandit prob-
lem and used it to derive a high-quality heuristic for the
restless bandit problem.

Our approach has some conceptual similarities to the
performance region approach in the sense that one defines
decision variables related to the proportion of time that
components of the system are in certain states, imposes
constraints that conserve these proportions with each tran-
sition, and optimizes an objective over the resulting feasi-
ble set. In spite of these commonalities, there are a number
of key differences. Many existing performance region for-
mulations, due to the nature of the stochastic system, pos-
sess attractive computational and theoretical properties. For
example, for systems that satisfy generalized conservation
laws, the performance region is an extended polymatroid or
contra-polymatroid, and so a linear function can be opti-
mized rapidly using a greedy algorithm, and the extreme
points of the performance region correspond to determinis-
tic priority rules (Bertsimas and Niño-Mora 1996). In con-
trast, our formulation does not appear to possess such special
computational structure, and as we discuss in Section 3.3,
optimal solutions of our fluid formulation may in general
not be achieved by any policy, let alone a specific class of
policies. At the same time, many extant performance region
approaches are fragile, in that they exploit nontrivial prop-
erties of the underlying stochastic system and thus cannot
be immediately extended to even simple generalizations.

An example of this is the formulation of the multiarmed
bandit problem in Bertsimas and Niño-Mora (1996), which
exploits specific conservation properties of the regular mul-
tiarmed bandit problem and cannot be extended to restless
bandits, necessitating the authors’ exploration of an alternate
approach in Bertsimas and Niño-Mora (2000). In contrast,
our formulation is insensitive to these types of differences;
it does not use any structure of the problem beyond the tran-
sition probabilities of individual components or groups of
components.

Within the performance region literature, our fluid formu-
lation of the restless bandit problem is similar to the perfor-
mance region model of Bertsimas and Niño-Mora (2000).
This model is actually equivalent to both the classical and the
alternate Lagrangian relaxation formulations (Propositions 8
and 9). As a result, our comparison of the fluid formula-
tion with the Lagrangian relaxation formulations allows us
to assert that our approach leads to tighter state-wise bounds
than the performance region formulation. Moreover, as we
will see in Section 5.5, our fluid approach significantly out-
performs the associated primal dual heuristic of Bertsimas
and Niño-Mora (2000).

The first fluid formulation that we will propose in Sec-
tion 3.2 is a countably infinite LO (CILO) problem. There
exists a rich literature on this class of problems (see, e.g.,
Anderson and Nash 1987). Within this area, the works of
Ghate and Smith (2013) and Lee et al. (2013) directly study
MDPs; however, both of these papers specifically study non-
stationary problems and do not additionally consider decom-
posability. Although we do not explore the application of
the methods and theory from the CILO literature to our set-
ting, we believe that it is an interesting direction for future
research.

Lastly, the alternate Lagrangian relaxation we will de-
velop in Section 4 arises by relaxing a certain type of action
consistency constraint that requires that the action taken in
any two components be equivalent. This bears some resem-
blance to the technique of “variable splitting” or “operator
splitting” that is used in continuous optimization (see, for
example, Boyd et al. 2011 and Goldfarb and Ma 2012). The
exploration of the connections of the alternate Lagrangian
relaxation to splitting-based formulations is an interesting
direction for future research.

3. Methodology
We begin in Section 3.1 by defining a general decompos-
able, infinite horizon MDP. We then present an infinite
LO formulation that is related to this MDP in Sec-
tion 3.2. In Section 3.3, we prove some interesting prop-
erties of the formulation and, motivated by one of these
properties, propose a solvable finite LO formulation and
an associated heuristic in Section 3.4. The proofs of all
theoretical results are provided in Section EC.1 of the elec-
tronic companion (available as supplemental material at
https://doi.org/10.1287/opre.2016.1531).
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3.1. Problem Definition

In this section, we define the decomposable MDP for which
we will subsequently develop our fluid approach.

Let S be the state space of the complete system, and
assume that the complete system state decomposes into M
components, so that the complete system state space can be
written as S = S1 × · · · × SM . Let A be a finite action
space, and assume that any action in A can be taken at
any state in S. We make this assumption for simplicity;
our approach can be extended to accommodate component-
dependent constraints that restrict which actions can be
action when specific components enter specific states (for
example, an action a cannot be taken when component m
is in state k). Let s4t5 be the random variable that repre-
sents the state of the complete system at time t, and let
sm4t5 denote the state of component m of the system, so that
s4t5= 4s14t51 0 0 0 1 sM4t55. Let �2 81121 0 0 09×S→A be the
policy under which the system is operating, which maps a
state s4t5 at time t to an action �4t1 s4t55 in A. Let pa4s1 s̄5
be the probability of the complete system transitioning from
state s to state s̄ in one step when action a ∈A is taken; i.e.,

pa4s1 s̄5=�4s4t + 15= s̄ � s4t5= s1�4t1 s4t55= a5

for all t ∈ 81121 0 0 09. Let pm
kja denote the probability of com-

ponent m transitioning from state k to state j in one step
when action a ∈A is taken; i.e.,

pm
kja =�4sm4t + 15= j � sm4t5= k1�4t1 s4t55= a51

for all t ∈ 81121 0 0 09. We assume that the components are
independent, so that pa4s1 s̄5 can be written compactly as

pa4s1 s̄5=

M
∏

m=1

pm
sm s̄ma0

Let ga4s5 be the reward associated with taking action a
when the system is in state s, and assume that it is additive
in the components; that is, it can be written as

ga4s5=

M
∑

m=1

gmsma1

where gmka is the reward associated with taking action a when
component m is in state k. Assume that the system starts in
state s = 4s11 0 0 0 1 sM5. The problem is then to find a policy
� that maximizes the expected total discounted reward:

max
�

Ɛ

[

�
∑

t=1

M
∑

m=1

�t−1gmsm4t51�4t1 s4t55

∣

∣

∣

∣

s415= s
]

0 (1)

3.2. Fluid Linear Optimization Formulation

We now consider a fluid formulation of problem (1). We
begin by defining, for each t ∈ 811213 0 0 09, the decision vari-
able xm

ka4t5 to be the proportion of time that component m ∈

811 0 0 0 1M9 is in state k ∈ Sm and action a ∈ A is taken at
time t. For every t ∈ 8112131 0 0 09, we also define the decision

variable Aa4t5 to be the proportion of time that action a ∈A
is taken at time t. As stated in Section 3.1, our data are the
discount factor �, the reward gmka (the reward accrued by the
decision maker when component m is in state k and action a
is taken) and the transition probability pm

kja (the probability
that component m transitions from state k to state j in one
step when action a is taken).

Finally, we assume that the system starts deterministically
in a state s ∈S. For convenience, we will define �m

k 4s5 as

�m
k 4s5=

{

11 if sm = k1

01 otherwise.

The fluid problem for initial state s can now be formulated
as follows:

maximize
x1A

�
∑

t=1

M
∑

m=1

∑

k∈Sm

∑

a∈A

�t−1
·gmka ·x

m
ka4t5 (2a)

subject to
∑

a∈A

xm
ja4t5=

∑

k∈Sm

∑

ã∈A

pm
kjãx

m
kã4t−151

∀m∈8110001M91 t∈8213100091 j ∈Sm1 (2b)
∑

k∈Sm

xm
ka4t5=Aa4t51

∀m∈8110001M91 a∈A1 t∈8112100091 (2c)
∑

a∈A

xm
ka415=�m

k 4s51

∀m∈8110001M91 k∈Sm1 (2d)

xm
ka4t5¾01 ∀m∈8110001M91 a∈A1

k∈Sm1 t∈8112100091 (2e)

Aa4t5¾01 ∀a∈A1 t∈8112100090 (2f)

Constraint (2b) ensures that probability is conserved from
time t − 1 to time t: the left-hand side represents the pro-
portion of time that component m is in state j at time t in
terms of the xm

ja4t5 variables, while the right-hand side rep-
resents the same proportion, only in terms of the xm

kã4t − 15
variables, which correspond to time t − 1. Constraint (2c)
ensures that, for each component, the proportion of time that
action a is taken in terms of the xm

ka4t5 variables is equal to
Aa4t5 (which is precisely defined as the proportion of time
that action a is taken at time t). Thus, the actions a ∈ A
connect the variables corresponding to the different compo-
nents. Constraint (2d) ensures that the initial frequency with
which each component m is in a state k is exactly �m

k 4s5.
The remaining two constraints (2e) and (2f) ensure that all
of the decision variables are nonnegative, as they represent
proportions. Given the definition of xm

ka4t5 as the proportion
of time that component m is in state k at time t and action a
is taken at time t, the objective can therefore be interpreted
as the expected discounted long-term reward.

Note that constraints (2b) and (2d), together with the
fact that

∑

j∈Sm pm
kja = 1 for any m, k, and a, imply that
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∑

k∈Sm

∑

a∈A x
m
ka4t5= 1 for each m and t. Together with con-

straint (2c), this also implies that
∑

a∈AAa4t5= 1 for each t.
The following result, which follows by standard argu-

ments in infinite dimensional linear optimization (Romejin
et al. 1992; see Section EC.1.1 in the electronic compan-
ion), establishes that the infinite horizon problem (2) is well
defined.

Proposition 1. For each s ∈S, problem (2) has an optimal
solution.

3.3. Properties of the Infinite Fluid LO

We will now develop some theoretical properties of the fluid
LO model. Let 4x4s51A4s55 and Z∗4s5 denote an optimal
solution and the optimal objective value, respectively, to
problem (2) corresponding to initial state s. Denote by J ∗4 · 5
the optimal value function obtained using dynamic program-
ming, that is,

J ∗4s5= max
�

Ɛ

[

�
∑

t=1

M
∑

m=1

�t−1gmsm4t51�4t1 s4t55

∣

∣

∣

∣

s415= s
]

for every s ∈ S. We then have the following relationship
between problem (2) and the optimal value function, whose
proof appears as Section EC.1.2 in the electronic companion.

Proposition 2. For every s ∈S, J ∗4s5¶Z∗4s5.

The idea behind the proof of Proposition 2 is that, by
using an optimal policy �∗, it is possible to construct a fea-
sible solution 4x1A5 to problem (2) whose objective value
is the true optimal value J ∗4s5. Unfortunately, the oppo-
site inequality does not hold in general; see Section EC.2
of the electronic companion for a counterexample. Let us
call the optimal solution 4x4s51A4s55 achievable if there
exists a (possibly nondeterministic and time-varying) policy
� such that

xm
ka4t1 s5=�4sm4t5= k1�4t1 s4t55= a51

∀m ∈ 811 0 0 0 1M91 k ∈Sm1 a ∈A1 t ∈ 81121 0 0 09

Aa4t1 s5=�4�4t1 s4t55= a51 ∀a ∈A1 t ∈ 81121 0 0 091

where s4t5 is the state of the complete system stochastic
process at time t, operated according to �, starting from s
(i.e., s415 = s). (Note that we use xm

ka4t1 s5 and Aa4t1 s5 to
denote the optimal value of xm

ka4t5 and Aa4t5 in the solution
4x4s51A4s55 that corresponds to initial state s.) Under the
assumption of achievability, we have the following result.

Proposition 3. Let s ∈S. If 4x4s51A4s55 is achievable, then
Z∗4s5¶ J ∗4s5.

The proof is contained Section EC.1.3 of the electronic
companion. The result follows since, under the assump-
tion of achievability, Z∗4s5 is the total expected discounted
reward of some policy, while J ∗4s5 is the highest any such
reward can be.

Under the assumptions of component independence and
achievability, the fluid formulation allows us to construct an
optimal policy.

Theorem 1. Suppose that for all s ∈ S, 4x4s51A4s55
is achievable. Define the deterministic, stationary policy
�2S→A as

�4s5= arg max
a∈A

Aa411 s50

Under these assumptions, the policy � is an optimal policy;
i.e., � solves problem (1).

The proof of the result (found in Section EC.1.4 of the
electronic companion) follows by showing that any action a
such that Aa411 s5> 0 is an action that is greedy with respect
to the objective value Z∗4 · 5 which, by combining Proposi-
tions 2 and 3, is equal to the optimal value function J ∗4 · 5.

3.4. Fluid-Based Heuristic

Theorem 1 tells us that, assuming that for every initial state
s the optimal solution of problem (2) for initial state s is
achievable, we immediately have an optimal policy by sim-
ply looking at the optimal values of the A variables at the
first period (t = 1). Typically, however, the optimal solu-
tion of (2) will not be achievable. It nevertheless seems
reasonable to expect that in many problems, the optimal
solution 4x4s51A4s55 may be close to being achievable for
many states s, because 4x4s51A4s55 still respects the transi-
tion behavior of the system at the level of individual compo-
nents. Consequently, the action arg maxa∈AAa411 s5 should
then be close to an optimal action for many states s. It is
therefore reasonable to expect that, by selecting the action
a as arg maxa∈AAa411 s5, one may often still be able to get
good performance, even though the optimal solution of prob-
lem (2) may not be achievable.

Notwithstanding the question of achievability, applying
this intuition in practice is not immediately possible. The
reason for this is that problem (2) is an LO problem with a
countably infinite number of variables and constraints, and
so cannot be solved using standard solvers. Toward the goal
of developing a practical heuristic policy for problem (1), we
now consider an alternate, finite problem that can be viewed
as an approximation to problem (2). This new formulation,
presented below as problem (3), requires the decision maker
to specify a time horizon T over which the evolution of the
system will be modeled. For t ∈ 811 0 0 0 1 T 9, the variables
xm
ka4t5 and Aa4t5 have the same meaning as in problem (3).

To model the evolution of the system beyond t = T , we use
the variable xm

ka4T + 15 to represent the expected discounted
long-run frequency with which component m is in state k
and action a is taken from t = T + 1 on. Similarly, we use
Aa4T + 15 to represent the expected discounted frequency
with which action a is taken from t = T + 1 on.

With these definitions, the formulation corresponding to
initial state s is presented below.

maximize
x1A

T+1
∑

t=1

M
∑

m=1

∑

k∈Sm

∑

a∈A

�t−1
·gmka ·x

m
ka4t5 (3a)
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subject to
∑

a∈A

xm
ja4t5=

∑

k∈Sm

∑

ã∈A

pm
kjã ·x

m
kã4t−151

∀m∈8110001M91 t∈8210001T 91 j ∈Sm1 (3b)
∑

a∈A

xm
ja4T +15=

∑

k∈Sm

∑

a∈A

pm
kja ·x

m
ka4T 5

+�·
∑

k∈Sm

∑

a∈A

pm
kja ·x

m
ka4T +151

∀m∈8110001M91 j ∈Sm1 (3c)
∑

k∈Sm

xm
ka4t5=Aa4t51

∀m∈8110001M91 a∈A1 t∈8110001T +19 (3d)
∑

a∈A

xm
ka415=�m

k 4s51

∀m∈8110001M91 k∈Sm1 (3e)

xm
ka4t5¾01 ∀m∈8110001M91 a∈A1

k∈Sm1 t∈8110001T +191 (3f)

Aa4t5¾01 ∀a∈A1 t∈8110001T +190 (3g)

With regard to constraints, we retain the same conserva-
tion constraints that relate the xm

ka variables at t − 1 to t,
the initial state constraint and the consistency constraints
that relate the xm

ka and the Aa variables at a time t, for t ∈

811 0 0 0 1 T 9. Beyond t = T , constraint (3c) models the long-
run transition behavior of the system. This constraint can
be interpreted as a conservation relation: the left-hand side
represents the expected discounted number of times from
T +1 on that we take an action out of component m being in
state j , while the right-hand side represents the expected dis-
counted number of times that we enter state j from T +1 on.
More specifically, the first right-hand side term represents
the expected number of times that we enter state j at time
T +1 (which is not discounted, since T +1 is the first period
of the horizon 8T +11 T +21 T +31 0 0 09) and the second term
represents the expected discounted number of times that we
enter state j from T + 2 on. Note also that constraint (3d),
which is the analog of constraint (2c), extends from t = 1 to
t = T + 1, ensuring that the xm

ka4T + 15 and the Aa4T + 15
variables are also consistent with each other. With regard to
the objective, observe that rather than being an infinite sum
from t = 1, the objective of problem (3) is a finite sum that
extends from t = 1 to t = T + 1.

Let Z∗
T 4s5 denote the optimal value of problem (3). Prob-

lem (3), like problem (2), provides an upper bound on the
optimal value function at J ∗4s5, and this bound improves
with T , as indicated by the following result.

Proposition 4. For each s ∈S and all T ∈ 81121 0 0 09:
(a) Z∗

T 4s5¾ J ∗4s5; and
(b) Z∗

T 4s5¾Z∗
T+14s5.

The proof of part (a) of Proposition 4 follows along simi-
lar lines to Proposition 2, while the proof of part (b) follows
by showing that a solution to problem (3) with T + 1 can

be used to construct a feasible solution for problem (3) with
T that achieves an objective value of Z∗

T+14s5. The proof
of this proposition can be found in Section EC.1.5 of the
electronic companion. Part (a) of the proposition is useful
because in passing from the infinite to the finite formula-
tion, we have not lost the useful property that the objective
value provides an upper bound on the optimal value func-
tion. Part (b) is important because it suggests a tradeoff in
bound quality and computation: by increasing T , the quality
of the bound improves, but the size of the formulation (the
number of variables and constraints) increases. We will see
later in Sections 5.4 and 5.5 that typically T does not need
to be very large to ensure strong bounds and performance.

With this formulation, our heuristic policy is then defined
as Algorithm 1.

Algorithm 1 (Fluid LO heuristic for infinite horizon problem
with known stationary probabilities)
Require: Parameter T ; data p, g, �; current state s ∈S.

Solve problem (3) corresponding to initial state s,
horizon T , and data p, g, � to obtain an optimal
solution 4x4s51A4s55.

Take action ã, where ã= arg maxa∈AAa411 s5.

Before continuing, we comment on two important ways
in which problem (3) can be extended and one limitation
of formulation (3). First of all, in problem (3), we formu-
lated the decomposable MDP problem by defining decision
variables that correspond to first-order information: in par-
ticular, xm

ka4t5 represents the frequency with which a single
component (component m) is in state k and action a is taken
at time t. As shown in Section 3.3, the resulting formulation
provides an upper bound on the optimal expected discounted
reward. We can improve on this by considering higher-order
fluid formulations, where rather than defining our decision
variables to correspond to one component being in a state,
we can define decision variables corresponding to combina-
tions of components being in combinations of states, while
a certain action is taken at a certain time. For example, a
second-order formulation would correspond to using deci-
sion variables that model how frequently pairs of compo-
nents are in different pairs of states while an action is taken
at each time. As the order of the formulation increases, the
objective value becomes an increasingly tighter bound on
the optimal value, and it may be reasonable to expect better
performance from using Algorithm 1; however, the size of
the formulation increases rapidly.

Second, problem (3) models an infinite horizon problem
and Algorithm 1 is a heuristic for this problem. For finite
horizon problems, we can apply our approach as follows.
Problem (3) can be modified by setting T to the horizon of
the actual problem and removing the terminal T +1 decision
variables that model the long-run evolution of the system.
Then, if we are at state s at period t′, we restrict the fluid
problem to 8t′1 t′ + 11 0 0 0 1 T 9 and use constraint (3e) to set
the initial state at t′ to s. We then solve the problem to obtain
the optimal solution 4x4s51A4s55 and we take the action a
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that maximizes Aa4t1 s5. Note that if the transition probabil-
ities change over time (i.e., rather than pm

kja we have pm
kja4t5

for t ∈ 811 0 0 0 1 T − 19), we may also modify constraint (3b)
and replace pm

kja with pm
kja4t5, without changing the size or

the nature of the resulting formulation.
Finally, we comment on one limitation to the fluid formu-

lation (3). Problem (3) is formulated in terms of the system
action space A; the actions that index the xm

ka4t5 and Aa4t5
variables are elements of the system action space A. For
certain problems, the system action space A may be small
and problem (3) may be easy to solve. For example, in a
multiarmed bandit problem where exactly one bandit must
be activated, �A� = M (one of the M bandits); similarly, in
an optimal stopping problem, �A� = 2 (stop or continue). For
other problems, the action space of the problem may grow
exponentially (e.g., a bandit problem where one may acti-
vate up to K of M bandits). For such problems, the fluid
formulation (3) will be harder to solve; we do not consider
this regime in the present paper. The development of a scal-
able solution method for large-scale versions of problem (3)
constitutes an interesting direction for future research.

4. Comparisons to Other Approaches
In this section, we compare our finite fluid formulation (3)
against three state-of-the-art formulations that can be used
to solve decomposable MDPs. We begin by stating these
formulations: in Sections 4.1–4.3, we present the ALO,
classical Lagrangian relaxation and the alternate Lagrangian
relaxation formulations, respectively. Then, in Section 4.4
we state a key theoretical result that asserts that the finite
fluid formulation (3) provides a provably tighter bound than
all three formulations. In Section 4.5 we discuss the sizes
of the formulations, and in Section 4.6, we discuss how
to extend the key idea of the fluid problem to the other
formulations.

4.1. Approximate Linear Optimization

For the ALO formulation of de Farias and Van Roy (2003),
we approximate the value function using the same functional
form as in Adelman and Mersereau (2008):

JALO4s5=

M
∑

m=1

Jm
sm3 (4)

i.e., we assume that each state of each component contributes
an additive effect. For a given initial state s ∈ S, the corre-
sponding ALO formulation is then

minimize
J

M
∑

m=1

∑

k∈Sm

�m
k 4s5 · Jm

k (5a)

subject to
M
∑

m=1

Jm
s̄m ¾

M
∑

m=1

gms̄ma +�
M
∑

m=1

∑

j∈Sm

pm
s̄mjaJ

m
j 1

∀ s̄ ∈S1 a ∈A0 (5b)

To derive a policy from J, we take the action ã that is greedy
with respect to JALO; this action is defined as

ã= arg max
a∈A

{ M
∑

m=1

gmsma +� ·

M
∑

m=1

∑

j∈Sm

pm
smjaJ

m
j

}

0 (6)

Let Z∗
ALO4s5 denote the objective value of problem (5)

with initial state s. The following result, due to Adelman and
Mersereau (2008), establishes that Z∗

ALO4s5 upper bounds
the optimal value function at s. The proof can be found in
Adelman and Mersereau (2008) and is thus omitted.

Proposition 5 (Proposition 4 of Adelman and Mer-
sereau 2008). For all s ∈S, Z∗

ALO4s5¾ J ∗4s5.

4.2. Classical Lagrangian Relaxation

We now present the classical Lagrangian relaxation (CLR)
approach. To apply this approach to our decomposable
MDP defined in Section 3.1, we require three additional
assumptions.

Assumption 1. In addition to the system state space being
decomposable along components, the action space also de-
composes along the components. More precisely, each com-
ponent m is endowed with both a state space Sm and an
action space Am. Thus, an action a in the system action
space can be represented as a tuple of component actions,
a= 4a11 0 0 0 1 am5 ∈A⊆A1 × · · · ×AM .

Assumption 2. The rewards and transition probabilities de-
compose with respect to the new action spaces Am. Let Rm

kam

denote the reward from component m when action am is
taken in state k and let p̄m

kam denote the transition probability
of component m when action am is taken. We require that
pm
kja = p̄m

kam and gmka = Rm
kam whenever the mth component of

a is am.

Assumption 3. The system action state space A is defined
implicitly through a linking constraint on the component
actions:

A=

{

a= 4a11 0 0 0 1 aM5∈A1
×· · ·×AM

∣

∣

∣

∣

M
∑

m=1

Dm4am5¶ b
}

1

(7)
where Dm2 Am →�q is a function for each m and b ∈�q for
some finite q.

When these three assumptions hold, the Lagrangian
approach involves dualizing the linking constraint
∑M

m=1 Dm4am5 ¶ b by introducing a Lagrange multiplier
vector Ë ∈�p for this linking constraint. The CLR formula-
tion of the problem can be written as follows:

minimize
Ë1V

{

ËT b
1 −�

+

M
∑

m=1

∑

k∈Sm

�m
k 4s5 ·V m

k

}

(8a)

subject to V m
k ¾Rm

kam −ËT Dm4am5+� ·
∑

j∈Sm

p̄m
kjam ·V m

j 1

∀m ∈ 811 0 0 0 1M91 k ∈Sm1 am
∈Am (8b)

Ë¾ 00 (8c)
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The optimal variable V can be interpreted as a component-
wise approximation to the value function. One can form a
value function approximation that is analogous to the ALO
approximation in Equation (4) and take the greedy action
analogously to Equation (6).

The dual of problem (8) is

maximize
z

M
∑

m=1

∑

k∈Sm

∑

am∈Am

Rm
kam · zmkam (9a)

subject to
∑

am∈Am

zmjam = �m
j 4s5+� ·

∑

k∈Sm

∑

am∈Am

p̄m
kjam · zmkam1

∀m ∈ 811 0 0 0 1M91 j ∈Sm1 (9b)
M
∑

m=1

∑

k∈Sm

∑

am∈Am

Dm4am5zmkam ¶
b

1 −�
1 (9c)

zmkam ¾ 01

∀m ∈ 811 0 0 0 1M91 k ∈Sm1 am
∈Am0 (9d)

The variable zmkam can be interpreted as the expected dis-
counted frequency with which component m is in state k and
action am is being taken over the entire infinite horizon. Con-
straint (9b) models the transition dynamics of component m
in an expected discounted sense, while constraint (9c) can be
interpreted as the expected discounted version of the linking
constraint that defines the action space A in Equation (7).

Let Z∗
CLR4s5 be the optimal objective value of problem (8)

corresponding to initial state s. The following two results,
due to Adelman and Mersereau (2008), establish that the
CLR provides an upper bound on the optimal value function
and that the ALO provides a tighter bound than the CLR.
The proofs can be found in Adelman and Mersereau (2008)
and are omitted.

Proposition 6 (Proposition 2 of Adelman and Mer-
sereau 2008). When Assumptions 1–3 hold, for all s ∈ S,
Z∗

CLR4s5¾ J ∗4s5.

Proposition 7 (Corollary 1 of Adelman and Mer-
sereau 2008). When Assumptions 1–3 hold, for all s ∈ S,
Z∗

ALO4s5¶Z∗
CLR4s5.

Furthermore, Adelman and Mersereau (2008) provide a
simple parameterized problem (Section 3.3 of that paper)
where the difference between Z∗

ALO4s5 and Z∗
CLR4s5 can be

made arbitrarily large.

4.3. Alternate Lagrangian Relaxation

The CLR formulation requires Assumptions 1–3 to hold.
When these assumptions hold, it is possible to exploit the
definition of the system action space in Equation (7) to arrive
at formulation (8). However, the decomposable MDP that we
have defined in Section 3.1 may not be consistent with these
assumptions; more precisely, the system action space may
not naturally decompose along the components. Consider,
for example, an optimal stopping problem where the system
is actually M independent components. In this example, the

action space (which consists of two actions, stop or continue)
does not decompose along each component, and it does not
make sense to think of the system action space as being the
feasible set of a coupling constraint on the action spaces of
M small MDPs.

Surprisingly, it turns out that there is a transformation
by which one can convert any decomposable MDP with a
general system action space A into a weakly coupled MDP
and thus apply the Lagrangian relaxation approach, even
when the action space A does not have a representation of
the form in Equation (7). The steps of this transformation
are as follows.

1. Construct M small MDPs, where the mth small MDP
corresponds to component m of the decomposable MDP.

2. Set the state space of small MDP m to be Sm, the state
space of component m.

3. Set the action space of small MDP m to be A, the
action space of the complete system. (Thus, each small MDP
involves controlling how component m evolves across its
own state space, where we may choose any action from the
system action space A.)

4. Enforce the following coupling constraint:

	8am
= a9− 	8am+1

= a9= 01

∀m ∈ 811 0 0 0 1M − 191 a ∈A1 (10)

or equivalently, that

am
= am+11 ∀m ∈ 811 0 0 0 1M − 190

The above constraint is simple: it requires that the actions
taken in small MDP m and small MDP m + 1 must be the
same, or equivalently, the actions am1 am′

taken in any pair
of small MDPs m1m′ ∈ 811 0 0 0 1M9 must be the same.

It is easy to see that this weakly coupled MDP is exactly
the same as the decomposable MDP of Section 3.1. We
now construct the Lagrangian relaxation of this weakly cou-
pled MDP. Introducing the Lagrange multiplier �m

a for the
4m1a5 constraint in the family of constraints (10) and using
Ë to denote the vector of multipliers, the corresponding
Lagrangian relaxation formulation of this weakly coupled
MDP for initial state s, can be shown to be

minimize
Ë1V

M
∑

m=1

∑

k∈Sm

�m
k 4s5V

m
k (11a)

subject to V m
k ¾ gmka − 	8m<M9 ·�m

a

+ 	8m> 19 ·�m−1
a +� ·

∑

j∈Sm

pm
kjaV

m
j 1

∀m ∈ 811 0 0 0 1M91 k ∈Sm1 a ∈A0 (11b)

We refer to this relaxation as the alternate Lagrangian
relaxation (ALR). A more detailed derivation of the ALR
can be found in Section EC.3 of the electronic companion.
As with the CLR and the ALO, one can form a value func-
tion approximation of the form in Equation (4) using the
optimal V values and take the greedy action analogously to
Equation (6).

It should be clear that the ALR problem (11) is not
the same as the CLR problem (8). Problem (11) only
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decomposes the state and does not decompose the system
action space; it accomplishes this by endowing each compo-
nent with the system action space and enforcing the action
consistency constraint (10). Problem (8), on the other hand,
decomposes the state and the action space by using the struc-
ture of the action space given in Equation (7). The resulting
formulations thus differ in their sizes; typically, the ALR
will be larger than the CLR because the dimensions of the
ALR problem (numbers of variables and constraints) scale
with the number of system actions. Note that problem (8)
can be formulated only when Assumptions 1–3 hold. On the
other hand, problem (11) can always be formulated, regard-
less of the structure of the action space. To the best of our
knowledge, this type of alternate Lagrangian relaxation has
not been proposed before.

To understand how the ALR relates to the fluid formula-
tion, it is helpful to formulate the dual of problem (11):

maximize
z

M
∑

m=1

∑

k∈Sm

∑

a∈A

gmkaz
m
ka (12a)

subject to
∑

a′∈A

zmja′ −�
∑

k∈Sm

∑

a∈A

pm
kja · zmka = �m

j 4s51

∀m ∈ 811 0 0 0 1M91 j ∈Sm1 (12b)
∑

k∈Sm

zmka =
∑

k∈Sm+1

zm+1
ka 1

∀m ∈ 811 0 0 0 1M − 191 a ∈A1 (12c)

zmka ¾ 01

∀m ∈ 811 0 0 0 1M91 k ∈Sm1 a ∈A0 (12d)

The dual variable zmka can be interpreted as the expected
discounted number of times that the component m is in
state k and action a is taken over the entire horizon. Con-
straint (12b) models the long-term transition behavior of
small MDP m, while constraint (12c) can be interpreted
as the expected discounted version of the linking con-
straint (10); the expected discounted number of times that
we take action a in small MDP m must be the same as the
expected discounted number of times that we take action a
in small MDP m+ 1.

Having formed the dual problem (12), we can see that the
ALR dual (12) and the finite fluid formulation (3) bear some
resemblance, in terms of accounting for how frequently com-
ponents are in specific states while a specific action is taken,
accounting for the transition behavior and accounting for the
fact that component state-action frequencies (the xm

ka4t5 vari-
ables in problem (3) and the zmka variables in problem (12))
are linked across components through the action. However,
the key difference lies in the fact that in problem (12), time
is fully aggregated: the zmka variables represent the long-run
expected discounted frequency with which component m is
in state k and action a is taken from t = 1 on. In contrast,
in problem (3), time is partially disaggregated: for t = 1 to

t = T , the transition behavior of the system is modeled sepa-
rately for each t, and for t = T +1 and beyond, the transition
behavior is modeled in the same aggregate sense (compare
constraints (12b) and (3c)). One can thus interpret the fluid
formulation as a partially disaggregated version of the ALR
dual (12). If one imagines the finite fluid formulation (3) with
T = 0—i.e., the formulation does not account for the tran-
sition behavior separately for any periods and only accounts
for transition behavior in a long-term discounted sense, from
period 1 (= T + 1) on—then one can see that it would be
equivalent to the ALR dual problem (12).

Let Z∗
ALR4s5 denote the optimal value of the ALR formu-

lation (11) corresponding to initial state s and let Z∗
ALO4s5

denote the optimal value of the ALO formulation (5) corre-
sponding to initial state s. The following result establishes
that problems (11) and (5) are equivalent.

Theorem 2. For each s ∈S:
(a) Z∗

ALO4s5=Z∗
ALR4s5; and

(b) Let V ∈ �
∑M

m=1 �Sm�. There exists Ë such that 4V1Ë5
is an optimal solution for the Lagrangian relaxation formu-
lation (11) corresponding to state s if and only if V is an
optimal solution for the ALO formulation (5) corresponding
to state s.

The proof of this result, found in Section EC.1.6 of the
electronic companion, follows by essentially showing that
the optimal solution of one problem leads to a feasible solu-
tion for the other problem with the same optimal value.

We offer two remarks on Theorem 2. First, we believe
Theorem 2 to be valuable because the alternate Lagrangian
relaxation problem (11) is considerably more tractable than
the ALO problem (5). Specifically, the former has a num-
ber of variables and constraints that is linear in the prob-
lem dimensions, while the latter has a number of constraints
that is in general exponential in the number of components.
One of the challenges of applying the ALO approach is
that, although applying a basis function approximation as in
Equation (4) allows one to reduce the number of variables,
one is still left with a large number of constraints (one for
each pair 4s1 a5 ∈S×A). To cope with the large number of
constraints, one might use constraint sampling (de Farias and
Van Roy 2004) or column generation techniques (see, e.g.,
Adelman 2007 and Adelman and Mersereau 2008). Theo-
rem 2 implies that in cases where A is not too large, one
can avoid resorting to these techniques by directly solving
problem (11): by part (a) of the theorem, the resulting bound
will be the same as that of the ALO formulation, and by
part (b), the resulting value function approximation is also a
valid ALO value function approximation (since the optimal
V for the ALR problem (11) is also a valid optimal solution
for the ALO problem (5)).

Second, it is valuable to contrast Theorem 2 to Proposi-
tion 7, which pertains to the relationship between the CLR
and the ALO formulations. Theorem 2 asserts that the ALR
and the ALO are equivalent, whereas Proposition 7 asserts
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that the CLR is no tighter than the ALO (moreover, as dis-
cussed in Section 4.2 there exist simple examples where the
difference between Z∗

ALO4s5 and Z∗
CLR4s5 can be extremely

large). Thus, problem (11) is a tighter formulation of the
MDP than problem (8), as summarized in the following
corollary.

Corollary 1. When Assumptions 1–3 hold, for all s ∈ S,
Z∗

ALR4s5¶Z∗
CLR4s5.

4.4. Comparison of Bounds

With Theorem 2 in hand, we are ready to state our key theo-
retical result, whose proof appears in Section EC.1.7 of the
electronic companion.

Theorem 3. For each s ∈S and all T ∈ 81121 0 0 09:
(a) Z∗

T 4s5¶Z∗
ALR4s5;

(b) Z∗
T 4s5¶Z∗

ALO4s5; and
(c) Z∗

T 4s5¶Z∗
CLR4s5 (when Assumptions 1–3 hold).

Part (a) follows by using a solution of problem (3) with
T to construct a feasible solution with objective value
Z∗

T 4s5 for problem (12); part (b) follows by using The-
orem 2 and part (a); and part (c) follows by combining
part (b) with Proposition 7. In Section 5, where we apply our
fluid approach to multiarmed bandits, we provide numerical
examples that show these three inequalities can be strict and
the bounds can be significantly different. The above result,
Theorem 2, and Propositions 4 and 7 can together be sum-
marized in the following corollary.

Corollary 2. When Assumptions 1–3 hold, for all s ∈ S
and all T ∈ 81121 0 0 09:

J ∗4s5 ¶ Z∗

T 4s5¶ · · ·¶Z∗

24s5

¶ Z∗

14s5¶Z∗

ALO4s5=Z∗

ALR4s5¶Z∗

CLR4s50

Theorem 3 essentially asserts that the fluid formulation
provides a provably tighter bound than all three alternate
approaches: the classical Lagrangian relaxation, the alter-
nate Lagrangian relaxation and the ALO. The classical
Lagrangian relaxation, and the ALO formulations have been
widely applied to solve practical problems; it is fair to say
that these approaches constitute the state-of-the-art in solv-
ing large-scale MDPs of practical interest. Our result is
therefore significant because we have shown that the finite
fluid formulation (3) leads to bounds that are at least as good
as those of the Lagrangian relaxation and ALO formulations.
In Section 5.4, we show that these differences can in fact be
significant. More significantly, although Theorem 3 pertains
to bounds, it is reasonable to expect that a formulation that
produces a tighter bound will also produce better policies.
Indeed, we will later show numerically that the heuristic pol-
icy given as Algorithm 1 based on the finite fluid problem (3)
can significantly outperform the Lagrangian relaxation and
ALO approaches.

4.5. Comparison of Formulation Sizes

As a complement to Theorem 3, where we compare the for-
mulation bounds, we now compare the formulations in terms
of their sizes. Table 1 summarizes the sizes of the four types
of formulations in terms of the number of variables and the
number of constraints. (Recall that q is the number of con-
straints that define the action space in Equation (7) for the
CLR approach.)

Although the exact numbers of variables and constraints
will depend on the specific values of �Sm�, �A�, �Am�, T ,
and q, we can derive some general qualitative insights:

• When Assumptions 1–3 hold and the action space can
be described by a small number q of linking constraints as
in Equation (7), then the CLR problem (8) will in general be
the smallest formulation, as its dimensions are not dependent
on �A� and �S�.

• The largest formulation will in general be the ALO
problem (5), as the number of constraints in the ALO scales
with the size of the system state space �S� and the size of
the system action space �A�.

• The ALR problem (11) and the finite fluid formula-
tion (3) will be somewhere in between the CLR problem (8)
and the ALO problem (5), as the numbers of variables and
constraints depend on the size of the system action space �A�.
Between the two, the fluid formulation will be larger than
the ALR formulation due to the dependence on T .

Thus, while the fluid formulation provides a provably
tighter bound than the other three formulations, it will in gen-
eral not be the smallest formulation. In situations where the
system action space A is not too large, the improved quality
of the bound may justify the additional computational effort
required for the fluid formulation.

4.6. Disaggregating the ALO and the ALR

The key idea in the fluid problem (3) is to partially disaggre-
gate time in the first T periods, and then aggregate time in a
discounted way from period T +1 on. This disaggregation is
what allows us to prove that the fluid problem is tighter than
the ALR (part (a) of Theorem 3). One might then wonder if
this type of disaggregation can be applied in the ALR and
the ALO. To understand how this disaggregation applies in
the ALR and ALO formulations, let us define two new par-
tially disaggregated formulations: the ALR(T ) formulation
and the ALO(T ) formulation.

The ALR(T ) formulation is

minimize
Ë1V

M
∑

m=1

∑

k∈Sm

�m
k 4s5V

m
k 415 (13a)

subject to V m
k 4t5¾gmka− 	8m<M9 ·�m

a 4t5

+ 	8m>19·�m−1
a 4t5+�·

∑

j∈Sm

pm
kjaV

m
j 4t+151

∀m∈8110001M91 k∈Sm1

a∈A1 t∈8110001T 9 (13b)
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Table 1. Comparison of sizes of formulations.

Formulation Number of variables Number of constraints

ALO problem (5)
M
∑

m=1

�Sm
� �S� · �A�

CLR problem (8)
M
∑

m=1

�Sm
� + q

M
∑

m=1

�Sm
� · �Am

�

ALR problem (11)
M
∑

m=1

�Sm
� + 4M − 15 · �A�

M
∑

m=1

�Sm
� · �A�

Fluid problem (3) 4T + 15
( M
∑

m=1

�Sm
� · �A� + �A�

)

4T + 15
( M
∑

m=1

�Sm
� +M �A�

)

Note. The number of constraints quoted for each formulation does not count any nonnegativity constraints.

V m
k 4T +15¾gmka− 	8m<M9 ·�m

a 4T +15

+ 	8m>19·�m−1
a 4T +15

+�·
∑

j∈Sm

pm
kjaV

m
j 4T +151

∀m∈8110001M91 k∈Sm1 a∈A0 (13c)

Let Z∗

ALR4T 54s5 denote the optimal value of problem (13).
The ALO(T ) formulation is

minimize
J

M
∑

m=1

∑

k∈Sm

�m
k 4s5 · Jm

k 415 (14a)

subject to
M
∑

m=1

Jm
s̄m4t5

¾
M
∑

m=1

gms̄ma +�
M
∑

m=1

∑

j∈Sm

pm
s̄mjaJ

m
j 4t + 151

∀ s̄ ∈S1 a ∈A1 t ∈ 811 0 0 0 1 T 91 (14b)
M
∑

m=1

Jm
s̄m4T + 15¾

M
∑

m=1

gms̄ma

+�
M
∑

m=1

∑

j∈Sm

pm
s̄mjaJ

m
j 4T + 151

∀ s̄ ∈S1 a ∈A0 (14c)

Let Z∗

ALO4T 54s5 denote the optimal value of problem (14).
We then have the following theoretical result.

Theorem 4. For all s ∈ S, T ∈ 81121 0 0 09, Z∗
T 4s5 =

Z∗

ALR4T 54s5=Z∗

ALO4T 54s5.

The first part of the equality restates more rigorously
the earlier observation from Section 4.3, which is that the
fluid problem can be viewed as the ALR problem with
time disaggregated over a horizon of T periods. The sec-
ond equality asserts that the fluid problem is equivalent to
a time-disaggregated version of the ALO, analogously to
Theorem 2.

5. Application to Multiarmed
Bandit Problems

5.1. Problem Definition

In the multiarmed bandit problem, the decision maker is pre-
sented with a set of bandits/arms, and each arm is endowed
with some state space. At each point in time, the decision
maker needs to select one of the arms to activate so as to
maximize his long-term (over an infinite horizon) expected
discounted reward. We consider the regular multiarmed ban-
dit problem, where only the activated arm changes state and
generates reward, and the restless multiarmed bandit prob-
lem, where inactive arms may also change state state (i.e.,
passive transitions are allowed) and generate reward (i.e.,
there are passive rewards).

5.2. Fluid Model

The multiarmed problem can be readily formulated in our
fluid framework. The components M of the stochastic sys-
tem correspond to the individual bandits. The action space
A is defined here as A = 811 0 0 0 1M9. The reward gmka, for
m ∈ 811 0 0 0 1M9, k ∈ Sm, and a ∈ A, is the reward that is
earned when arm m is in state k and arm a is activated. Sim-
ilarly, pm

kja is the probability that bandit m transitions from
state k ∈Sm to state j ∈Sm when arm a is activated. In the
case of the regular bandit problem, we need to ensure that
whenever m 6=a, gmka = 0 for every k∈Sm and pm

kja = 	8k= j9
for every pair of states k, j ∈ Sm. In the case of the rest-
less bandit problem, we only need to ensure that whenever
a1a′1m∈ 811 0 0 0 1M9, with m 6= a and m 6= a′, that gmka = gmka′

for every k ∈Sm and pm
kja = pm

kja′ for every k, j ∈Sm.

5.3. Relation to Bertsimas and Niño-Mora (2000)

One interesting property of the fluid formulation is how it
relates to the performance measure formulation developed
in Bertsimas and Niño-Mora (2000). Let wm

j0 be defined for
every bandit m ∈ 811 0 0 0 1M9, state j ∈ Sm as the expected
discounted number of times that bandit m is in state j and it
is not activated. Similarly, let wm

j1 be defined as the expected
discounted number of times that bandit m is in state j and is
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activated. Let p̄m
ij1 and p̄m

ij0 be the active and passive transition
probabilities of bandit m from state i to state j , respectively,
and let Rm

k0 and Rm
k1 be the passive and active rewards from

activating bandit m when it is in state k, respectively. The wm
ja

variables are referred to as performance measures. Finally,
suppose that the system starts in state s ∈S at time t = 1 and
as assumed in Section 5.1, we must activate exactly one arm
at any period.

For a given collection of performance measures, the cor-
responding reward is the sum

∑M
m=1

∑

k∈Sm

∑

a∈80119R
m
kaw

m
ka,

which forms the objective of the problem. The performance
measures, by their definition, satisfy certain conservation
laws, and the feasible set of performance measures resulting
from those laws is referred to as the performance region. The
formulation developed in Bertsimas and Niño-Mora (2000)
is to maximize this reward over the performance region:

maximize
w

M
∑

m=1

∑

k∈Sm

∑

a∈80119

Rm
kaw

m
ka (15a)

subject to
M
∑

m=1

∑

k∈Sm

wm
k1 =

1
1−�

1 (15b)

wm
j0 +wm

j1 =�m
j 4s5+�

∑

i∈Sm

∑

a∈80119

p̄m
ijaw

m
ia1

∀m∈8110001M91 j ∈Sm1 (15c)

wm
j01 w

m
j1¾01 ∀m∈8110001M91 j ∈Sm0 (15d)

In words, the formulation finds the vector of performance
measures w that satisfies the transition constraints at the
level of the components and maximizes the total expected
discounted reward, which is just the sum of the performance
measures weighted by their corresponding rewards. Note
that in terms of the data defining the fluid formulation, the
data in problem (15) and in the finite fluid problem (3)
identify as follows. For every bandit m, states i and j , we
have p̄m

ij1 = pm
ijm, while p̄m

ij0 = pm
ija for every a 6= m. Simi-

larly, for the rewards, we have Rm
k1 = gmkm for every bandit

m and state k, while Rm
k0 = gmka for every a 6= m. To make

decisions, Bertsimas and Niño-Mora (2000) propose a pri-
mal dual heuristic where one solve problem (15) at each new
state s. We describe how the heuristic operates for the case
when exactly one arm must be activated at each period; for
more details, the interested reader is referred to Bertsimas
and Niño-Mora (2000). Using the solution of the problem,
the heuristic considers the optimal variables wm

sm1 and wm
sm0

for each m ∈ 811 0 0 0 1M9 and proceeds as follows:
1. If exactly one of wm

sm1 for m ∈ 811 0 0 0 1M9 is positive,
say bandit m′, then activate bandit m′. (Intuitively, wm

sm1 rep-
resents the expected discounted amount of time that bandit m
is in its initial state sm and it is activated; if there is only one
bandit for which this value is positive, the solution suggests
that we should activate this bandit.)

2. If all wm
sm1 are zero, then activate the bandit m ∈

811 0 0 0 1M9 with the lowest reduced cost of the active perfor-
mance measure wm

sm1. (Intuitively, the reduced cost of wm
sm1

represents the marginal decrease in the objective value per
unit increase in wm

sm1; by selecting the m with the lowest
reduced cost of wm

sm1, we select the bandit that will have the
lowest detriment to the objective.)

3. If more than one wm
sm1 for m ∈ 811 0 0 0 1M9 is positive,

then activate the bandit m with the largest reduced cost of
the passive performance measure wm

sm0 among those m with
wm

sm1 > 0. (Similarly to the previous case, the reduced cost
of wm

sm0 represents the marginal decrease in the objective for
a unit increase in the passive performance measure wm

sm0; by
activating the bandit with the largest passive reduced cost we
try to counteract this effect.)

Before continuing on to the results, it is important to estab-
lish how the performance region formulation relates to the
formulations presented in Section 4 and to the fluid method.
Let Z∗

BNM4s5 be the optimal objective value of problem (15)
when the system starts in state s ∈ S. First, problem (15)
and the CLR problem (8) are equivalent; this connection was
originally observed by Hawkins (2003). To see this, for each
m set Am = 80119, where 1 indicates that bandit m is acti-
vated and 0 indicates that it is not activated, and plug in the
following choices of Dm4 · 5 and b for the coupling constraint
in Equation (7):

Dm4am5=

[

	8am = 19
−	8am = 19

]

1 b =

[

1
−1

]

0 (16)

This coupling constraint requires that exactly one bandit be
activated. It is then easy to see that the dual CLR problem (9)
exactly coincides with problem (15), leading to the following
result.

Proposition 8. For each s ∈S, Z∗
CLR4s5=Z∗

BNM4s5.

It turns out that problem (15) and the ALR problem (11)
for the problem as defined in Section 5.1 are in fact the same,
in that they lead to the same objective value.

Proposition 9. For each s ∈S, Z∗
ALR4s5=Z∗

BNM4s5.

The proof (found in Section EC.1.9 in the electronic com-
panion) consists of showing that the optimal solution of one
can be used to construct a feasible solution for the other. An
immediate corollary of this result and Theorem 3 is that the
finite fluid formulation bound Z∗

T 4s5 is at least as tight as the
performance region bound Z∗

BNM4s5.

Corollary 3. For each s ∈S and T ∈ 81121 0 0 09, Z∗
T 4s5¶

Z∗
BNM4s5.

Combining Theorem 2 and Propositions 4, 8, and 9, we
obtain the following corollary which summarizes the order-
ing of all bounds for this problem.

Corollary 4. For the bandit problem defined in Sec-
tion 5.1, for all s ∈S and T ∈ 81121 0 0 09:

J ∗4s5 ¶ Z∗

T 4s5¶ · · ·¶Z∗

24s5¶Z∗

14s5

¶ Z∗

ALO4s5=Z∗

ALR4s5=Z∗

CLR4s5=Z∗

BNM4s50
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Table 2. Objective value results (in %) for infinite horizon experiment, M = 5, n = 4,
for instance 1 of sets REG.SAR and RSTLS.SAR.

Set Instance � Method (h) Omean1 h O951 h Omax1 h

REG.SAR 1 005 Fluid, T = 1 103511 207801 403253
Fluid, T = 5 004161 008019 102562
Fluid, T = 10 004015 007976 102562
ALR 200973 502572 700816

009 Fluid, T = 1 108020 309777 607438
Fluid, T = 5 006383 102568 109959
Fluid, T = 10 003879 006368 006997
ALR 205094 504317 807091

0095 Fluid, T = 1 007311 107283 207162
Fluid, T = 5 002679 006317 009857
Fluid, T = 10 001518 002938 003639
ALR 009774 202040 304264

0099 Fluid, T = 1 000334 000862 001391
Fluid, T = 5 000132 000343 000556
Fluid, T = 10 000081 000170 000224
ALR 000436 001063 001708

RSTLS.SAR 1 005 Fluid, T = 1 209222 502561 608915
Fluid, T = 5 206406 401177 502122
Fluid, T = 10 206406 401177 502122
ALR 405558 1000487 5207464

009 Fluid, T = 1 407079 506050 605985
Fluid, T = 5 405995 501573 505452
Fluid, T = 10 405995 501573 505452
ALR 504381 803128 1306692

0095 Fluid, T = 1 408905 503635 508881
Fluid, T = 5 408336 501322 503391
Fluid, T = 10 408336 501322 503391
ALR 502499 606973 902057

0099 Fluid, T = 1 500305 501297 502383
Fluid, T = 5 500187 500810 501239
Fluid, T = 10 500187 500810 501239
ALR 501015 503931 508688

Note. In each instance, value of � and metric, the best value is indicated in bold.

In Sections 5.4, we will show that the inequality between
Z∗
T 4s5 and the four equivalent bounds—Z∗

ALO4s5, Z
∗
ALR4s5,

Z∗
CLR4s5, and Z∗

BNM4s5—can be strict.
Since the fluid formulation provides a bound that is at

least as tight as the performance region formulation, it would
seem reasonable to expect that the heuristic policy derived
from the fluid formulation to give performance that is gen-
erally as good as, if not better than, that of the primal dual
heuristic derived from the performance region formulation
in Bertsimas and Niño-Mora (2000). In Section 5.5, we will
show that this is indeed the case, and that in fact the fluid-
based heuristic significantly outperforms the primal dual
heuristic of Bertsimas and Niño-Mora (2000).

5.4. Bound Comparison

We begin the discussion of our numerical results by compar-
ing the bound generated by our fluid optimization model to
the bound generated by the ALR on medium-scale instances.
For the fluid approach, we considered T values of 1, 5, and
10; for values of T > 10, the metric values changed negligi-
bly relative to T = 10.

We set the number of bandits M to 5 and the number of
states of each bandit n to 4, resulting in 54 = 1024 system
states. In each bandit state space, we number the states from
1 to n (i.e., Sm = 81121 0 0 0 1 n9). We generated four different
sets of five instances, with the following structure:

• REG.SAR, consisting of regular multiarmed bandits,
where the reward gmkm was set as gmkm = 410/n5 · k for every
bandit m and state k. Each active transition probability vec-
tor was drawn uniformly from the 4n− 15-dimensional unit
simplex.

• RSTLS.SAR, consisting of restless bandits, with the
same reward structure as REG.SAR. Each active and passive
transition probability vector was drawn uniformly from the
4n− 15-dimensional unit simplex.

• RSTLS.SBR, consisting of restless bandits, where the
active reward gmkm was set as gmkm = 410/n5 ·k for every m and
k, and the passive reward gmka for a 6=m was set to �m

k , where
�m
k = 41/M5 · 410/n5 · k for each m and k. Each active and

passive transition probability vector was drawn uniformly
from the 4n− 15-dimensional unit simplex.
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Table 3. Objective value results (in %) for infinite horizon experiment, M = 5, n = 4,
for instance 1 of sets RSTLS.SBR and RSTLS.DET.SBR.

Set Instance � Method (h) Omean1 h O951 h Omax1 h

RSTLS.SBR 1 005 Fluid, T = 1 101795 200612 302705
Fluid, T = 5 101426 108816 204596
Fluid, T = 10 101426 108816 204596
ALR 205059 801574 2708741

009 Fluid, T = 1 201639 205757 207914
Fluid, T = 5 201286 204244 206105
Fluid, T = 10 201286 204244 206105
ALR 206231 403336 605445

0095 Fluid, T = 1 202758 204911 206111
Fluid, T = 5 202564 204104 205125
Fluid, T = 10 202564 204104 205125
ALR 205039 303414 403872

0099 Fluid, T = 1 203645 204090 204350
Fluid, T = 5 203604 203927 204140
Fluid, T = 10 203604 203927 204140
ALR 204099 205735 207749

RSTLS.DET.SBR 1 005 Fluid, T = 1 005910 302775 707156
Fluid, T = 5 000403 002744 006560
Fluid, T = 10 000152 000664 006012
ALR 107255 708925 2300435

009 Fluid, T = 1 006112 202488 305360
Fluid, T = 5 000975 004078 104104
Fluid, T = 10 000816 003973 104104
ALR 100275 303645 406934

0095 Fluid, T = 1 004020 103776 201960
Fluid, T = 5 000662 003673 009590
Fluid, T = 10 000609 003446 009590
ALR 005910 108808 206698

0099 Fluid, T = 1 001102 003352 005066
Fluid, T = 5 000223 000995 002475
Fluid, T = 10 000158 000984 002475
ALR 001497 003972 005404

Note. In each instance, value of � and metric, the best value is indicated in bold.

• RSTLS.DET.SBR, consisting of restless bandits, where
the reward structure is the same as RSTLS.SBR. Each active
and passive transition probability matrix was generated by
permuting the rows of the n-dimensional identity matrix
uniformly at random (i.e., transition matrices are still ran-
domly generated, but the transitions that they govern are now
deterministic).

The reason for considering the types of reward struc-
tures in sets REG.SAR, RSTLS.SAR, RSTLS.SBR, and
RSTLS.DET.SBR is that in these sets of instances, the
reward structures of any two bandits are identical, but they
are different in their probabilistic structure. In order for a
method to be successful, therefore, it must be able to rec-
ognize that the bandits are different in their probabilistic
structure, which will directly affect the long-term expected
reward that the method could possibly garner from each ban-
dit. We would expect that the greedy method, which only
uses reward information, would perform rather poorly on
these instances. RSTLS.SAR and RSTLS.SBR are interest-
ing to consider together because passive rewards are zero
in the former and nonzero in the latter. RSTLS.DET.SBR

is interesting as it is not stochastic and thus constitutes a
potentially pathological instance set.

To compare the bounds, we define three different met-
rics as follows. Given a method h for solving the problem
that is based on an optimization formulation, let Zh4s5 be
the objective value (upper bound) generated at s. Define
RDh4s5= 100% × 4Zh4s5− J ∗4s55/J ∗4s5 as the relative dif-
ference between Zh4s5 and the optimal value function J ∗4s5.
Then, define the metrics Omean1 h, OP1h, and Omax1 h as the
mean, P th percentile and maximum of 8RDh4s59s∈S. In gen-
eral, the lower the values of the O metrics, the closer the
bound is to the true optimal value function; a value of zero
for Omean1 h implies that the bound/objective value is exactly
equal to the true optimal value function. We will consider
these metrics for the fluid and the ALR formulations. We
compute the optimal value function J ∗ using value iteration.

Tables 2 and 3 compare the objective values obtained
from the fluid formulation and from the ALR problem (11)
with the optimal objective value. We only show the first
instance from each set, as the results for the other instances
in each instance set were qualitatively similar. Recall that by
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Table 4. Large-scale policy performance and runtime simulation results for M ∈ 851109, n∈ 851101209 RSTLS.DET.SBR
instances.

Instance � Method (h) Gmean1 h Std. err. Umean1 h Std. err. Tmean1 h Std. err.

M = 5, n= 5 0099 Fluid, T = 1 1003367 4003525 002319 4000095 00002 400005
Fluid, T = 2 604168 4000165 001870 4000085 00002 400005
Fluid, T = 5 400224 4000085 000976 4000065 00006 400005
Fluid, T = 10 402265 4000625 000000 4000005 00016 400005
Greedy 2409822 4002555 — — — —
ALR 902136 4000795 002858 4000095 00003 400005
BNMPD 3106512 4104075 002858 4000095 00001 400005

M = 5, n= 10 0099 Fluid, T = 1 406314 4001175 001898 4000085 00003 400005
Fluid, T = 2 404024 4001205 001530 4000075 00003 400005
Fluid, T = 5 207667 4000395 000664 4000045 00009 400005
Fluid, T = 10 207258 4000325 000000 4000005 00033 400005
Greedy 2101001 4003955 — — — —
ALR 1300486 4003775 002389 4000105 00007 400005
BNMPD 3109437 4006905 002389 4000105 00002 400005

M = 5, n= 20 0099 Fluid, T = 1 704533 4001905 002898 4000115 00005 400005
Fluid, T = 2 607666 4000795 002254 4000095 00005 400005
Fluid, T = 5 508754 4001715 001166 4000065 00014 400005
Fluid, T = 10 502519 4001925 000000 4000005 00056 400005
Greedy 2202220 4003345 — — — —
ALR 1803783 4001945 003557 4000125 00013 400005
BNMPD 3608163 4007245 003557 4000125 00004 400005

M = 10, n= 5 0099 Fluid, T = 1 304065 4001525 000860 4000055 00006 400005
Fluid, T = 2 106663 4001475 000596 4000045 00008 400005
Fluid, T = 5 100393 4000685 000209 4000025 00032 400005
Fluid, T = 10 100984 4000855 000000 4000005 00091 400005
Greedy 1002405 4004065 — — — —
ALR 804630 4005785 001218 4000075 00008 400005
BNMPD 3409582 4106015 001218 4000075 00002 400005

M = 10, n= 10 0099 Fluid, T = 1 108662 4001175 001611 4000075 00010 400005
Fluid, T = 2 104467 4000665 001263 4000065 00013 400005
Fluid, T = 5 104348 4000955 000532 4000035 00056 400005
Fluid, T = 10 104386 4001075 000000 4000005 00150 400005
Greedy 1804851 4003345 — — — —
ALR 1600600 4008735 001902 4000075 00022 400005
BNMPD 3403912 4104705 001902 4000075 00003 400005

M = 10, n= 20 0099 Fluid, T = 1 208752 4001305 003040 4000105 00018 400005
Fluid, T = 2 205045 4000905 002722 4000115 00023 400005
Fluid, T = 5 201928 4000605 001579 4000095 00088 400005
Fluid, T = 10 108246 4000615 000000 4000005 00313 400005
Greedy 2206095 4002235 — — — —
ALR 2609484 4004165 003488 4000115 00068 400005
BNMPD 4005795 4003815 003488 4000115 00004 400005

Theorem 2, Propositions 8 and 9 that the ALR problem (11),
the CLR problem (8), the ALO problem (5), and the perfor-
mance region problem (15) all yield the same objective value
for a fixed initial state s. We can see that for every instance
and every discount factor, the objective values from the fluid
formulation are closer to the optimal objective than those
from the ALR and, by extension, those from the ALO, CLR,
and performance region formulations. We can also see that
although part (b) of Theorem 3 indicates that the fluid bound
does not worsen as T increases, there is negligible improve-
ment beyond the T = 5 to T = 10 range. This suggests that
we can obtain substantially better state-wise bounds than
the ALR formulation by solving only a modestly larger LO
problem.

5.5. Large-Scale Bandit Results

So far, we have focused on bandit problems that are relatively
small, and we have compared the bounds from the differ-
ent methods. In this section, we compare the policy perfor-
mance of the methods on larger instances, where the optimal
value function is unavailable to us and where we must resort
to simulation. We consider instances that are generated in
the same way as the RSTLS.DET.SBR set of the previous
section, for values of M in 851101151209 and values of n
in 851101209. We restrict ourselves to a discount factor of
� = 0099 and simulate the system for 500 steps. We con-
sider the fluid heuristic with T values of 1, 2, 5, and 10; the
ALR approach; the primal dual heuristic of Bertsimas and
Niño-Mora (2000); and the greedy heuristic (which activates
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Table 5. Large-scale policy performance and runtime simulation results for � = 0099, M ∈ 8151209, n ∈ 851101209
RSTLS.DET.SBR instances.

Instance � Method (h) Gmean1 h Std. err. Umean1 h Std. err. Tmean1 h Std. err.

M = 15, n= 5 0099 Fluid, T = 1 007693 4000305 000359 4000035 00020 400005
Fluid, T = 2 007681 4000325 000172 4000025 00028 400005
Fluid, T = 5 007015 4000135 000039 4000015 00143 400005
Fluid, T = 10 007001 4000135 000000 4000005 00218 400005
Greedy 901309 4002165 — — — —
ALR 403748 4004285 000523 4000045 00022 400005
BNMPD 2802468 4008005 000523 4000045 00002 400005

M = 15, n= 10 0099 Fluid, T = 1 202354 4000545 001176 4000065 00025 400005
Fluid, T = 2 105200 4000235 000931 4000055 00036 400005
Fluid, T = 5 103230 4000065 000355 4000035 00137 400005
Fluid, T = 10 101694 4000045 000000 4000005 00533 400005
Greedy 1108774 4001605 — — — —
ALR 2104492 4003025 001443 4000065 00091 400005
BNMPD 3404392 4005355 001443 4000065 00004 400005

M = 15, n= 20 0099 Fluid, T = 1 201894 4000815 002589 4000105 00046 400005
Fluid, T = 2 200305 4000405 002312 4000115 00062 400005
Fluid, T = 5 107992 4000325 001106 4000065 00217 400005
Fluid, T = 10 106754 4000365 000000 4000005 10170 400005
Greedy 1302699 4001065 — — — —
ALR 1406558 4001745 002893 4000115 00354 400005
BNMPD 3707471 4006265 002893 4000115 00005 400005

M = 20, n= 5 0099 Fluid, T = 1 101169 4000455 000554 4000045 00056 400005
Fluid, T = 2 008508 4000085 000318 4000035 00058 400005
Fluid, T = 5 007976 4000045 000065 4000015 00148 400005
Fluid, T = 10 007953 4000045 000000 4000005 00418 400005
Greedy 909393 4002285 — — — —
ALR 802415 4009165 000816 4000055 00043 400005
BNMPD 3001071 4007245 000816 4000055 00003 400005

M = 20, n= 10 0099 Fluid, T = 1 206674 4000395 001360 4000055 00076 400005
Fluid, T = 2 206459 4000325 001104 4000055 00069 400005
Fluid, T = 5 105767 4000255 000416 4000035 00278 400005
Fluid, T = 10 103553 4000245 000000 4000005 10206 400015
Greedy 907231 4001065 — — — —
ALR 1204764 4002065 001632 4000065 00203 400005
BNMPD 3303620 4007865 001632 4000065 00004 400005

M = 20, n= 20 0099 Fluid, T = 1 501385 4001055 001918 4000075 00086 400005
Fluid, T = 2 303105 4000855 001614 4000065 00100 400005
Fluid, T = 5 105725 4000395 000822 4000045 00487 400005
Fluid, T = 10 102369 4000265 000000 4000005 20657 400015
Greedy 1102028 4001345 — — — —
ALR 1109748 4000905 002238 4000075 00089 400005
BNMPD 3602378 4007595 002238 4000075 00005 400005

the arm that leads to the highest immediate reward). For the
ALR approach, we re-solve it at each new state s and take
the action that is greedy with respect to the value function
approximation V. Note that we do not consider the policy
that is greedy with respect to the value function approxi-
mation from the ALO formulation (5) since by part (b) of
Theorem 2, any value function approximation that is optimal
for the ALR (11) is a value function approximation that is
optimal for the ALO (5), and vice versa. Similarly, we do
not consider the policy that arises from the CLR formula-
tion (8), since by Propositions 8 and 9, the CLR and ALR
formulations are equivalent for this problem.

To compare the methods, for each pair 4M1n5, we gener-
ate K = 100 random initial states s4151 0 0 0 1 s4K5 by uniformly

selecting one of the n states for each component. We sim-
ulate each policy h from each initial state s4k5 to obtain a
realized reward Jk1h. We also compute the initial objective
value Zk1h of the policy h (where applicable) at each initial
state. For each initial state s4k5 and method h, we thus obtain
a gap value Gk1h, defined as

Gk1h = 100% ×
Z∗
k − Jk1h
Z∗

k

1

where Z∗
k = minhZk1h is the lowest upper bound available

(in this set of experiments, this is the fluid method with the
largest value of T ). We then consider the mean value of
8Gk1h9

K
k=1 for each method h, which we report as Gmean1 h.

In addition, for each initial state s4k5 and method h based on
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a mathematical optimization formulation, we compute the
relative difference Uk1h between the upper bound from h and
the best upper bound, defined as

Uk1h = 100% ×
Zk1h −Z∗

k

Z∗
k

1

and we compute the mean over the K initial states as Umean1 h.
Finally, for each initial state s4k5 and each method h that
is based on an optimization formulation, we compute Tk1h,
which is the average solution time in seconds of the under-
lying formulation over all of the steps of the simulation. We
then consider the mean value of 8Tk1h9

K
k=1 for each applicable

method h, which we report as Tmean1 h.
Tables 4 and 5 display the results from this collection

of instances. With regard to policy performance, the results
indicate that the fluid method delivers excellent perfor-
mance, even in the most challenging instance (M = 20, n=

20), and significantly outperforms the greedy heuristic, the
Lagrangian relaxation approach, and the primal dual heuris-
tic. From a solution time perspective, the finite fluid formu-
lation (3) does take considerably more time per action than
either the performance region formulation (15) or the ALR
formulation (11). However, even in the largest case (M = 20,
n = 20) and for the largest value of T , the average time per
action is on the order of 2.6 seconds; for certain applications,
this amount of time may still be feasible.

6. Conclusion
In this paper, we have considered a fluid optimization
approach for solving decomposable MDPs. The essential
feature of the approach is that it models the transitions of
the system at the level of individual components; in this
way, the approach is tractable and scalable. We provided
theoretical justification for this approach by showing that it
provides tighter bounds on the optimal value than three state-
of-the-art approaches. We showed computationally that this
approach leads to strong performance in multiarmed bandit
problems.

There are several promising directions for future research.
It would be valuable to extend the approach to deal with
situations where the data (e.g., the transition probabilities)
are not known precisely and may become known more pre-
cisely with time. Problems of this kind fall in the domain of
robust optimization (see Bertsimas et al. 2011), and it would
seem that an adaptable robust version of the fluid formula-
tion could be appropriate in this setting. At the same time,
problems of this kind could also be viewed as reinforcement
learning problems. One approach from this direction could
involve combining the fluid approach with posterior sam-
pling (see, e.g., Russo and Van Roy 2014): in this approach,
one would maintain a distribution over the problem data, and
at each period, one would take a sample from this distribu-
tion, solve the fluid problem corresponding to the sample to
determine the action to take and update the distribution with
the realized reward and transitions from that action. Explor-
ing the benefits of such a scheme, as well as other ways

of combining the fluid method with reinforcement learn-
ing methods, thus constitutes another interesting direction of
future work.

Supplemental Material
Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2016.1531.
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