
European Journal of Operational Research 263 (2017) 664–678

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Innovative Applications of O.R.

A comparison of Monte Carlo tree search and rolling horizon

optimization for large-scale dynamic resource allocation problems

Dimitris Bertsimas a , J. Daniel Griffith

b , Vishal Gupta

c , Mykel J. Kochenderfer d ,
Velibor V. Miši ́c

e , ∗

a Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
b Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420, USA
c Department of Data Sciences and Operations, Marshall School of Business, University of Southern California, 3670 Trousdale Parkway, Los Angeles, CA

90089, USA
d Department of Aeronautics and Astronautics, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA
e Anderson School of Management, University of California, Los Angeles, 110 Westwood Plaza, Los Angeles, CA 90024, USA

a r t i c l e i n f o

Article history:

Received 7 June 2016

Accepted 15 May 2017

Available online 19 May 2017

Keywords:

Dynamic resource allocation

Monte Carlo tree search

Rolling horizon optimization

Wildfire management

Queueing control

a b s t r a c t

Dynamic resource allocation (DRA) problems constitute an important class of dynamic stochastic opti-

mization problems that arise in many real-world applications. DRA problems are notoriously difficult to

solve since they combine stochastic dynamics with intractably large state and action spaces. Although the

artificial intelligence and operations research communities have independently proposed two successful

frameworks for solving such problems—Monte Carlo tree search (MCTS) and rolling horizon optimization

(RHO), respectively—the relative merits of these two approaches are not well understood. In this paper,

we adapt MCTS and RHO to two problems – a problem inspired by tactical wildfire management and a

classical problem involving the control of queueing networks – and undertake an extensive computational

study comparing the two methods on large scale instances of both problems in terms of both the state

and the action spaces. Both methods are able to greatly improve on a baseline, problem-specific heuristic.

On smaller instances, the MCTS and RHO approaches perform comparably, but RHO outperforms MCTS

as the size of the problem increases for a fixed computational budget.

© 2017 Elsevier B.V. All rights reserved.

t

i

e

t

s

a

e

t

t

&

a

s

b
1. Introduction

Dynamic resource allocation (DRA) problems are problems

where one must assign resources to tasks over some finite time

horizon. Many important real-world problems can be cast as DRA

problems, including applications in air traffic control (Bertsimas &

Stock Patterson, 1998), scheduling (Bertsimas, Gupta, & Lulli, 2014)

and logistics, transportation and fulfillment (Acimovic & Graves,

2012). DRA problems are notoriously difficult to solve exactly since

they typically exhibit stochasticity and extremely large state and

action spaces. The artificial intelligence (AI) and operations re-

search (OR) communities have sought more sophisticated tech-

niques for addressing DRA and other dynamic stochastic optimiza-

tion problems.
∗ Corresponding author.

E-mail addresses: dbertsim@mit.edu (D. Bertsimas), dan.griffith@ll.mit.edu (J.D.

Griffith), guptavis@usc.edu (V. Gupta), mykel@stanford.edu (M.J. Kochenderfer),

velibor.misic@anderson.ucla.edu (V.V. Miši ́c).

b

f

a

t

a

n

http://dx.doi.org/10.1016/j.ejor.2017.05.032

0377-2217/© 2017 Elsevier B.V. All rights reserved.
Within the AI community, one approach for dynamic stochas-

ic optimization problems that has received increasing attention

n the last 15 years is Monte Carlo tree search (MCTS) (Browne

t al., 2012; Coulom, 2007). In any dynamic stochastic optimiza-

ion problem, one can represent the possible trajectories of the

ystem—the state and the action taken at each decision epoch—as

 tree, where the root represents the initial state. In MCTS, one it-

ratively builds an approximation to this tree and uses it to inform

he choice of action. MCTS’s effectiveness stems from two key fea-

ures: (1) bandit upper confidence bounds (see Auer, Cesa-Bianchi,

 Fischer, 2002; Kocsis & Szepesvári, 2006) can be used to bal-

nce exploration and exploitation in learning, and (2) application-

pecific heuristics and knowledge can be used to customize the

ase algorithm (Browne et al., 2012). Moreover, MCTS can easily

e tailored to a variety of problems. Indeed, the only prerequisite

or implementing MCTS is a generative model that, given a state

nd an action at a given decision epoch, generates a new state for

he next epoch. This flexibility makes MCTS particularly attractive

s a general purpose methodology.

Most importantly, MCTS has been extremely successful in a

umber of applications, particularly in designing expert computer

http://dx.doi.org/10.1016/j.ejor.2017.05.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.05.032&domain=pdf
mailto:dbertsim@mit.edu
mailto:dan.griffith@ll.mit.edu
mailto:guptavis@usc.edu
mailto:mykel@stanford.edu
mailto:velibor.misic@anderson.ucla.edu
http://dx.doi.org/10.1016/j.ejor.2017.05.032

D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678 665

p

n

&

P

p

H

l

t

a

b

c

(

l

a

2

p

D

r

t

M

c

t

s

h

r

o

s

fl

t

a

n

s

&

c

M

i

fi

c

t

t

n

a

a

a

p

R

s

a

I

p

p

H

s

K

A

d

l

r

w
layers for difficult games such as Go (Enzenberger, Muller, Ar-

eson, Segal, 2010 ; Gelly & Silver, 2011), Hex (Arneson, Hayward,

 Henderson, 2010), Kriegspiel (Ciancarini & Favini, 2010), and

oker (Rubin & Watson, 2011). Although MCTS is one of the top-

erforming algorithms for this class of games, games like Go and

ex are qualitatively different from DRAs: unlike typical DRA prob-

ems, the state of these games does not evolve stochastically, and

he size of the feasible action space is often much smaller. For ex-

mple, in the Go instances of Gelly and Silver (2011) , the action

ranching factor is at most 81, whereas in one DRA instance we

onsider, a typical branching factor is approximately 230 million

cf. Eq. (12)). While MCTS has been applied to probabilistic prob-

ems (Eyerich, Keller, & Helmert, 2010) and problems with large

ction spaces (Couëtoux, Hoock, Sokolovska, Teytaud, & Bonnard,

011), there is relatively little experience with MCTS in DRA-like

roblems.

On the other hand, within the OR community, the study of

RAs has proceeded along different lines. A prominent stream of

esearch is based upon mathematical optimization (MO). In con-

rast to MCTS which only requires access to a generative model,

O approaches model the dynamics of the system explicitly via a

onstrained optimization problem. The solution to this optimiza-

ion problem then yields a control policy for the system. We con-

ider a specific MO-based approach that is sometimes called rolling

orizon optimization (RHO). Specifically, we replace uncertain pa-

ameters in a MO formulation with their expected values and peri-

dically re-solve the formulation for an updated policy as the true

ystem evolves. This paradigm goes by many other names such as

uid approximation, certainty equivalent control or model predic-

ive control. It is known to have excellent practical performance in

pplications like queueing (Avram, Bertsimas, & Ricard, 1995) and

etwork revenue management (Ciocan & Farias, 2012), and in some

pecial cases, also enjoys strong theoretical guarantees (e.g., Ciocan

 Farias, 2012; Gallego & van Ryzin, 1994).

The widespread use and success of RHO approaches for DRAs

ontrasts strongly with a lack of computational experience with

CTS for DRAs. Furthermore, the two methods differ philosoph-

cally. MCTS involves directly simulating the true system and ef-

ciently searching through the tree of state-action trajectories. In

ontrast, RHO involves first constructing an approximation of the

rue system and then solving an optimization problem based on

his approximation to determine a policy; this policy is generally

ot guaranteed to be optimal for the true system. MCTS and RHO

lso differ in their informational requirements. MCTS only requires

 generative model for simulating transitions, and one can inter-

ct with this model in a “black-box” fashion, without being able to

recisely and compactly describe its dynamics. On the other hand,

HO requires one to know something about the dynamics of the

ystem in order to specify the underlying MO model.

In this paper, we aim to understand the relative merits of MCTS

nd RHO by applying them to two challenging DRA problems:

1. Tactical wildfire management. The decision maker controls

the spread of a fire on a discrete grid (representing a wild-

land area) by deploying suppression resources to cells on this

grid. This problem is computationally intractable: each cell on

the grid may be burning or not burning, resulting in an ex-

ponentially large state space, while the allocation decision in-

volves choosing a subset of the burning cells to extinguish, re-

sulting in an exponentially large action space. This problem is

also of practical importance: for example, in the US, increasing

wildfire severity has resulted in increased government spend-

ing on wildfire management, amounting to $3.5 billion in 2013

(Bracmort, 2013).

2. Queueing network control. The decision maker controls a net-

work of servers that serve jobs of different classes and at
each decision epoch, must decide which job class each server

should process so as to minimize the average long-run num-

ber of jobs in the system. The system state is encoded by the

number of jobs of each class and is exponential in the num-

ber of job classes. The action is to decide which class each

server should service, and is also exponential in the number of

servers. The problem thus constitutes a challenging DRA. At the

same time, queueing networks arise in many domains such as

manufacturing (Buzacott & Shanthikumar, 1993), computer sys-

tems (Harchol-Balter, 2013) and neuroscience (Miši ́c, Sporns, &

McIntosh, 2014).

We summarize our contributions as follows:

1. We develop an MCTS approach for the tactical wildfire man-

agement problem and the queueing network control problem.

To the best of our knowledge, this represents the first applica-

tion of MCTS to challenging DRA problems motivated by real-

world applications. Towards this end, we combine a number

of classical features of MCTS, such as bandit upper confidence

bounds, with new features such as double progressive widen-

ing (Couëtoux, Hoock, Sokolovska, Teytaud, & Bonnard, 2011).

For the wildfire problem, we also propose a novel action gen-

eration approach to cope with the size of the state and action

spaces of the DRA.

2. We propose an RHO approach based on a mixed-integer op-

timization (MIO) model of the wildfire problem that approxi-

mates the original discrete and stochastic elements of the MDP

by suitable continuous and deterministic counterparts. This par-

ticular formulation incorporates elements of a linear dynami-

cal system which may be of independent interest in other DRA

problems. For the queueing control problem, we apply an ex-

isting fluid optimization approach (Avram, Bertsimas, & Ricard,

1995).

3. Through extensive computational experiments in both prob-

lems, we show the following:

(a) MCTS and RHO both produce high-quality solutions, gener-

ally performing as well or better than a baseline heuristic.

MCTS and RHO perform comparably when the problem in-

stance is small. With a fixed computational budget, how-

ever, the RHO approach begins to outperform the MCTS ap-

proach as the size of the problem instance grows, either in

state space or action space. Indeed, in the wildfire problem,

MCTS can begin to perform worse than our baseline heuris-

tic when the action space grows very large; the RHO ap-

proach, by comparison, still performs quite well. Similarly,

for queueing network control, MCTS with an informed roll-

out policy (the c μ rule) often performs worse than the same

rollout policy on its own for larger queueing systems.

(b) The choice of hyperparameters in MCTS—such as the explo-

ration bonus and the progressive widening parameters—can

significantly affect its overall performance. The interdepen-

dence between these parameters is complex and in general,

they cannot be chosen independently. Some care must be

taken to appropriately tune the algorithm to a specific DRA.

n tactical wildfire management, there have been a number of em-

irically validated, deterministic models for wildfire spread pro-

osed (e.g., Tymstra, Bryce, Wotton, Taylor, & Armitage, 2010).

owever, there have been fewer works that incorporate the

tochastic elements of fire spread (Boychuck, Braun, Kulperger,

rougly, & Stanford, 20 08; Fried, Gilless, & Spero, 20 06; Ntaimo,

rrubla, Stripling, Young, & Spencer, 2012). Most works focus on

eveloping simulation models; few consider the associated prob-

em of managing suppression resources. A notable exception is the

esearch stream of Hu and Ntaimo (2009) and Ntaimo et al. (2013) ,

hich considers the problem of determining how many and what

666 D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678

Fig. 1. B (x) transition model.

Fig. 2. Criss-cross network from Bertsimas, Nasrabadi, and Paschalidis (2015) .

H

c

e

t

t

s

i

t

c

t

l

t

t

t

2

i

e

a

c

i

t

a

t

p

j

t

i

e

t

a

a

s

s

W

a

s

w

t

kind of suppression resources to allocate to a wildfire, but not

the tactical DRA problem of optimally dynamically allocating sup-

pression resources. In queueing network control, a variety of ap-

proaches have been proposed, including ones based on heavy traf-

fic approximations (Harrison, 1988), fluid approximations (Avram,

Bertsimas, & Ricard, 1995) and characterizing the achievable per-

formance region (Bertsimas, Paschalidis, & Tsitsiklis, 1994). To the

best of our knowledge, MCTS has not been previously applied in

this domain.

The rest of this paper is organized as follows. In Section 2 ,

we introduce our MDP formulations of the tactical wildfire man-

agement and the queueing network control problems that we use

to compare the MCTS and RHO approaches. In Sections 3 and

4 , we describe the MCTS and RHO approaches, respectively. In

Sections 5 and 6 , we describe our computational experiments for

the wildfire and queueing control problems, respectively, and re-

port on the results of these experiments. Finally, in Section 7 ,

we summarize the main contributions of the work and highlight

promising directions for future research.

2. Problem definition

We begin by describing the dynamics of the two problems that

we will use to compare MCTS and RHO.

2.1. Tactical wildfire management

Specifically inspired by the stochastic model of Boychuck,

Braun, Kulperger, Krougly, and Stanford (2008) for wildland fire

simulation, we propose a Markov decision process model of tac-

tical wildfire management. We partition the landscape into a grid

of cells X . Each cell x ∈ X is endowed with two attributes: B (x),

a Boolean (0/1) variable indicating whether the cell is currently

burning, and F (x), an integer variable indicating how much fuel is

remaining in the cell. The collection of these two attributes over all

cells in the grid represents the state of the Markov decision pro-

cess.

We assume a set of suppression teams I . To simplify the model,

we will treat all suppression teams as identical, but it is straight-

forward to extend to the case of heterogeneous teams. The deci-

sions of our MDP correspond to assigning teams to cells. For each

i ∈ I, let a (i) ∈ X denote the cell to which we assign suppression

team i . We assume that any team can be assigned to any cell at

any time step, i.e., that the travel time between cells is negligibly

small compared to the time between each period.

Once ignited, a cell consumes fuel at a constant rate. Once the

fuel is exhausted, the cell extinguishes. Since fuel consumption oc-

curs at a constant rate, without loss of generality, we can rescale

the units of fuel to make this rate equal to unity. Thus, we model

the evolution of fuel in the model by

F t+1 (x) =

{
F t (x) if ¬ B t (x) ∨ F t (x) = 0

F t (x) − 1 otherwise,
(1)

where ¬ denotes the Boolean complement (¬ 0 = 1 ; ¬ 1 = 0) and ∨
denotes the Boolean “Or”. Note that this evolution is deterministic

given B t (x).

The evolution of B t (x), however, is stochastic. Fig. 1 shows the

probabilistic transition model for B t (x) where

ρ1 =

{
1 − ∏

y (1 − P (x, y) B t (y)) if F t (x) > 0

0 otherwise
(2)

and

ρ2 =

{
1 if F t (x) = 0

1 − ∏

i (1 − S(x) δx (a (i))) otherwise.
(3)
ere, P (x , y) is the probability that a fire in cell y ignites a fire in

ell x . Generally, only the neighbors of x can ignite x , and so we

xpect P (x , y) to be sparse. The specification of P (x , y) can capture

he tendency of a fire to propagate primarily in one direction due

o wind or sloping terrain. S (x) is the probability that a suppres-

ion effort on cell x successfully extinguishes the cell, while δx (a
(i))

s an expression that is 1 if a (i) = x (suppression team i is allocated

o cell x) and 0 otherwise. We assume that the probability of suc-

ess for multiple attempts on the same cell are independent. Under

hese dynamics, cells that have been previously extinguished may

ater reignite.

The reward for a cell burning is R (x) (always negative) and the

otal reward received at the t th step is �x B t (x) R (x). We can vary

he reward across the grid to represent a higher cost of fire in par-

icular areas (e.g., urban zones).

.2. Control of queueing networks

In this problem, there is a network of servers and each server

s fed by one or more queues/buffers that correspond to differ-

nt job classes. Each job class is served by only one server, but

 server may serve several different job classes. When a server be-

omes free, it can choose to process an available job from one of

ts classes. Once the server finishes, the job either exits the sys-

em, or proceeds to another server; at the new server, it becomes

 job of a different class and waits in the queue for the class until

he new server begins processing it. The time each server takes to

rocess a job is random, with the distribution determined by the

ob’s class. Jobs of some classes may arrive exogenously to the sys-

em. For the problem we will study, each such arrival process is an

ndependent Poisson process, and the service time for each class is

xponential.

As an example, let us consider the example network in Fig. 2 ,

aken from Bertsimas, Nasrabadi, and Paschalidis (2015) . In this ex-

mple, there are two servers and three job classes. Jobs of class 1

nd 2 arrive exogenously to the system with rates λ1 and λ2 re-

pectively, and are serviced by server S 1 with rates μ1 and μ2 re-

pectively. When a job of class 2 is completed, it exits the system.

hen a job of class 1 is completed, it becomes a job of class 3,

nd enters the corresponding buffer, where it awaits service from

erver S 2 . The service time of a class 3 job in S 2 is exponential

ith rate μ3 ; once a class 3 job completes service at S 2 , it exits

he system.

D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678 667

a

W

d

n

c

a

j

d

s

t

i

r

r

n

j

f

s

W

w

t

o

t

r

w

w

e

3

t

n

3

p

p

a

t

s

m

d

w

f

s

s

b

m

i

fl

1

m

t

t

a

a

t

p

A

t

i

i

m

t

n

o

t

t

c

o

i

ζ

y

F

s

d

n

c

v

n

m

s

F

F

F

I

∑
x

I

z

A

t

v

l

u

h

c

t

e

t
The queue sizes for the different job classes fluctuate over time

s jobs arrive, enter service and are routed through the system.

henever a server completes a job and becomes free, we must

ecide which queue (i.e., which job class) the server will draw its

ext job from. The problem of queueing network control is to de-

ide at each such decision epoch which job class will be served so

s to minimize the expected weighted long-run average number of

obs in the system.

To define the queueing network control problem, we use n to

enote the number of job classes and m to denote the number of

ervers. We use s (i) to denote the server of job class i . We use λi

o denote the rate of the exogenous Poisson arrival process to class

 (note that λi may be 0, in which case there are no exogenous ar-

ivals to class i). We use μi to denote the exponential service time

ate for job class i when it is served by server s (i). We use g ij to de-

ote routing; more specifically, g i j = 1 if class i jobs become class

 jobs after service at server s (i), and 0 otherwise. Note that g i j = 0

or every j denotes the fact that jobs of class i , once processed by

 (i), exit the system, and do not join a queue at a different server.

e use c = (c 1 , . . . , c n) to denote the vector of objective function

eights for each class. Finally, we let T denote the time horizon for

he queuing problem.

We let x (t) = (x 1 (t) , x 2 (t) , . . . , x n (t)) denote the number of jobs

f class i in the system (including a job that may be in service) at

ime t . The objective is to minimize the expected weighted long-

un average number of jobs in the system from t = 0 to t = T ,

hich is given by the following performance metric:

1

T
· E π

[∫ T

0

c T x (t) dt

]
,

here π denotes the policy for deciding which class to serve at

ach epoch.

. A rolling horizon optimization approach

We now present rolling horizon optimization approaches for

he tactical wildfire management problem and for the queueing

etwork control problem.

.1. Approach for tactical wildfire management

In this section, we present an optimization-based solution ap-

roach for the tactical wildfire management problem. In this ap-

roach, we formulate a deterministic optimization problem that

pproximates the original MDP. At each decision step, we re-solve

his approximation based on the current state of the process and

elect the first prescribed allocation. The key feature of the for-

ulation is the use of a deterministic, “smoothed” version of the

ynamics presented in Section 2 . Rather than modeling the state

ith a discrete level of fuel and binary state of burning, we model

uel as a continuous quantity and model a new (continuous) inten-

ity level of each cell representing the rate at which fuel is con-

umed. Then, rather than modeling the evolution of cells being

urning/not burning using probabilistic transitions (cf. Fig. 1), we

odel the evolution of intensity through one-step linear dynam-

cs. Other authors have used similar ideas when motivating various

uid models in the OR literature (see, e.g., Gallego & van Ryzin,

994; Avram, Bertsimas, & Ricard, 1995).

Smoothing the dynamics in this way results in a tractable opti-

ization model that can be solved to obtain an allocation at each

ime step. We wish to emphasize that this formulation is not iden-

ical to the original problem. As a result, the derived allocation

t each period is not guaranteed to be the same as the optimal

llocation of the original MDP in Section 2.1 . Nevertheless, given

he wide application of fluid models to other, similarly intractable

roblems in the OR literature (such as Gallego & van Ryzin, 1994;
vram, Bertsimas, & Ricard, 1995), it seems reasonable to expect

hat our approach may still yield good policies for the original MDP

n Section 2.1 .

Let A t (x , i) be a binary variable that is 1 if suppression team

 ∈ I is assigned to cell x at time t and 0 otherwise; this is the

ain decision variable of the problem. Let I t (x) represent the in-

ensity of the fire in cell x ∈ X at time t , which is a continuous,

onnegative decision variable. Finally, let F t (x) denote the amount

f fuel available at the start of period t in cell x . Due to the con-

inuous nature of I t (x), F t (x) does not directly correspond to fuel in

he original MDP formulation. In the online supplement, we dis-

uss how to calibrate the initial fuel values F 0 (x).

Some additional notation is required to describe the evolution

f I t (x). Define N (x) as the set of cells that are neighbors of x

n the sense of fire transmission, i.e., N (x) = { y : P (x, y) > 0 } . Let

t (y , x) ∈ [0, 1] be the rate at which the intensity I t−1 (y) of cell

 at time t − 1 contributes to the intensity I t (x) of cell x at time t .

urthermore, let ˜ ζt (x, i) ∈ [0 , 1] be the relative reduction in inten-

ity when suppression team i is assigned to cell x at time t . We

iscuss how ζ and

˜ ζ are calibrated in the online supplement. Fi-

ally, let I 0 (x) = 1 if cell x is burning at time 0, and I 0 (x) = 0 if

ell x is not burning. Note that these values are simply the initial

alues of the intensity variables and I t (x) for t > 0 can take on any

onnegative value.

With this notation, our formulation is

inimize
∑

x ∈X

T ∑

t=0

−R (x) I t (X) (4a)

ubject to I t (x) ≥ I t−1 (x) +

∑

y ∈N (x)

I t−1 (y) · ζt (y, x)

−
∑

i ∈I
A t−1 (x, i) · Ī t (x) · ˜ ζt (x, i)

−
(

F 0 (x) +

∑

y ∈N (x)

F 0 (y)

)

· z t−1 (x) ,

∀ x ∈ X , t ∈ { 1 , . . . , T } , (4b)

 t (x) = F 0 (x) −
t−1 ∑

t ′ =0

I t ′ (x) , ∀ x ∈ X , t ∈ { 0 , . . . , T } , (4c)

 t (x) ≥ δ · (1 − z t (x)) , ∀ x ∈ X , t ∈ { 0 , . . . , T } , (4d)

 t (x) ≤ δ · z t (x) + F 0 (x) · (1 − z t (x)) , ∀ x ∈ X , t ∈ { 0 , . . . , T } ,
(4e)

 t+1 (x) ≤ F 0 (x) · (1 − z t (x)) , ∀ x ∈ X , t ∈ { 0 , . . . , T } , (4f)

 ∈X
A t (x, i) ≤ 1 , ∀ t ∈ { 0 , . . . , T } , i ∈ I, (4g)

 t (x) , F t (x) ≥ 0 , ∀ x ∈ X , t ∈ { 0 , . . . , T } , (4h)

 t (x) ∈ { 0 , 1 } , ∀ x ∈ X , t ∈ { 0 , . . . , T } , (4i)

 t (x, i) ∈ { 0 , 1 } , ∀ x ∈ X , i ∈ I, t ∈ { 0 , . . . , T } . (4j)

Here, δ > 0 is a small threshold chosen so that a cell with less

han δ units of fuel cannot burn. Consequently, the binary decision

ariable z t (x) indicates whether the fuel at time t in cell x is be-

ow δ or not. Finally in the spirit of “big-M” constraints, Ī t (x) is an

pper bound on the maximal value attainable by I t (x). We discuss

ow δ and Ī t (x) are set in the online supplement.

We now describe the constraints. Constraint (4b) is the main

onstraint, which expresses the one-step dynamics of the fire in-

ensity in region x at time t . Although the constraint is in in-

quality form, it is not difficult to see that in an optimal solu-

ion, the constraint will always be satisfied at equality since the

668 D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678

fi

a

T

x

B

w∫

w

a

v

g

i

I

a

c

m

w

h

t

H

w

w

m

s

H

u

w

s

t

v

m

s

H

u

p

A

n

t
objective is a sum of the intensities over all periods and regions

weighted by the (positive) importance factors. The first two terms

of the right-hand side represent that—without intervention and

without regard for fuel—the intensity of a cell one step into the

future is the current intensity (I t−1 (x)) plus the sum of the in-

tensities of the neighboring cells weighted by the transmission

rates (
∑

y ∈N (x) I t−1 (y) · ζt (y, x)). If suppression team i is assigned

to cell x at t − 1 , then A t (x, i) = 1 and the intensity is reduced

by ˜ ζt (x, i) · Ī t (x) . If the cell’s fuel is below δ at time t − 1 , then

z t (x) = 1 , and the intensity is reduced by F 0 (x) +

∑

y ∈N (x) F 0 (y) ;

since the intensity of a cell is upper bounded by the initial fuel of

that cell, the term −
(
F 0 (x) +

∑

y ∈N (x) F 0 (y)
)

· z t−1 (x) ensures that

whenever the fuel F t (x) drops below δ, this constraint becomes

vacuous.

With regard to the rest of the model, constraint (4c) is the

equation for the remaining fuel at a given period as a function

of the intensities (intensity is assumed to be the fuel burned in a

particular time period). Constraints (4d) and (4e) are forcing con-

straints that force F t (x) to be between δ and F 0 (x) if z(t) = 0 , and

between 0 and δ if z(t) = 1 . Constraint (4f) ensures that if there is

insufficient fuel in cell x at period t , then the intensity in the next

period is zero. If there is sufficient fuel, then the constraint is vac-

uous (the intensity is at most F 0 (x), which is already implied in the

formulation). Constraint (4g) ensures that each team in each period

is assigned to at most one cell. The remaining constraints ensure

that the fuel and intensity are continuous nonnegative variables,

and that the sufficient fuel and team assignment variables are bi-

nary. Finally, the objective (4a) is the sum of the intensities over

all time periods and all cells, weighted by the importance factor of

each cell in each period.

Problem (4) is a mixed-integer optimization (MIO) model. Al-

though MIO problems are not solvable in polynomial time, there

exist high-quality solvers that are able to solve such problems ef-

ficiently in practice. In resource-constrained environments when

it is not possible to solve the above model to optimality, we can

still obtain good approximate solutions by relaxing the A t (x , i) vari-

ables to be continuous within the unit interval [0, 1]. Then, given

an optimal solution with fractional values for the A t (x , i) vari-

ables at t = 0 , we can compute a score v (x) for each cell x as

v (x) =

∑

i ∈I A 0 (x, i) . We then assign suppression teams to the |I|
cells with the highest values of the index v . Indeed, we will follow

this strategy in Section 5 .

3.2. Approach for queueing network control

In this section, we describe the fluid optimization approach

that we will use for the queueing network control problem; the

approach was first developed in Avram, Bertsimas, and Ricard

(1995) and later extended in Bertsimas, Nasrabadi, and Pascha-

lidis (2015) . The key idea is to replace the probabilistic arrival and

service dynamics with a system of deterministic differential equa-

tions. As for the deterministic model in Section 3.1 , we emphasize

that this new optimization problem is not equivalent to the true

MDP in Section 2.2 and as such, the resulting decision of which

queue each server should work on is not necessarily optimal for

the true MDP. However, it is well-known that fluid approximations

of queueing networks are closely related to the true queueing net-

work. For example, a queueing network is stable if its fluid approx-

imation is stable (Dai, 1995). Moreover, fluid approaches perform

very well in simulations (Avram, Bertsimas, & Ricard, 1995; Bertsi-

mas, Nasrabadi, & Paschalidis, 2015).

The decision variables are x (t) = (x 1 (t) , . . . , x n (t)) for

t ∈ [0, T], where x i (t) indicates the fluid of class i at time t ,

and u (t) = (u 1 (t) , . . . , u n (t)) where u i (t) denotes the effort (rate

of service) that is devoted to queue i by its server s (i).
We use the same data in Section 2.2 . For convenience, we de-

ne the matrix A as

 i j =

⎧ ⎪ ⎨

⎪ ⎩

1 if i = j,
−1 if class i jobs become class j jobs upon service

by server s (i) ,
0 otherwise.

he dynamics of the class fluids can be written in matrix form as

˙
 (t) = λ − Au (t) , ∀ t ∈ [0 , T] . (5)

y integrating on both sides for every t , the constraint can be re-

ritten as
 t

0

A u (s) ds + x (t) = x (0) + λt, ∀ t ∈ [0 , T] (6)

here x (0) is a vector of the number of jobs of each class present

t time 0.

The variable u i (t) denotes the rate at which class i is being ser-

iced by server s (i). These rates are constrained as follows: for a

iven server s , we must have

∑

 : s (i)= s

u i (t)

μi

≤ 1 , ∀ t ∈ [0 , T] . (7)

n words, u i (t)/ μi represents the rate that class i is being serviced

s a fraction of server s ’s (maximum) rate for class i , and so the

onstraint ensures that in a fluid sense, the server is serving at

ost one job per time unit. By defining the matrix H component-

ise as

 si =

{
1 /μi if s (i) = s,

0 otherwise ,

he constraint can be written in matrix form as

u (t) ≤ 1 , ∀ t ∈ [0 , T] . (8)

here 1 is a column vector of m ones.

With these definitions, the fluid optimization problem can be

ritten as

inimize
1

T

∫ T

0

c T x (t) dt (9a)

ubject to

∫ t

0

A u (s) ds + x (t) = x (0) + λt, ∀ t ∈ [0 , T] , (9b)

u (t) ≤ 1 , ∀ t ∈ [0 , T] , (9c)

 (t) , x (t) ≥ 0 , ∀ t ∈ [0 , T] , (9d)

here the objective is the long-run average weighted fluid in the

ystem and the last two constraints require that the effort devoted

o each class and the fluid of each class are never below zero.

The problem can be further re-formulated to eliminate the x (t)

ariable:

inimize
1

T

∫ T

0

(T − t) c T (λ − Au (t)) dt (10a)

ubject to

∫ t

0

A u (s) ds ≤ x (0) + λt, ∀ t ∈ [0 , T] , (10b)

u (t) ≤ 1 , ∀ t ∈ [0 , T] , (10c)

 (t) ≥ 0 , ∀ t ∈ [0 , T] . (10d)

This problem is a semi-continuous linear programming (SCLP)

roblem that has been studied extensively (see, e.g., Pullan, 1993).

lthough the problem appears to be intractable (having an infinite

umber of variables and constraints), it turns out that it is possible

o characterize the structure of the optimal solution (namely, the

D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678 669

c

fi

1

p

4

t

l

g

f

B

a

b

W

i

g

(

g

m

4

g

t

v

e

s

s

a

r

l

t

t

t

t

n

n

a

c

a

a

w

c

i

t

t

f

a

a

Q

Algorithm 1 Monte Carlo tree search with double progressive

widening.

1: function MonteCarloTreeSearch (s, d)

2: loop

3: Simulate (s, d)

4: return arg max a Q(s, a)

5: function Simulate (s, d)

6: if d = 0 then

7: return 0

8: if s 	∈ T then

9: T = T ∪ { s }
10: N(s) ← N 0 (s)

11: return Rollout (s, d)

12: N(s) ← N(s) + 1

13: if | A (s) | < kN(s) α then

14: a ← Getnext (s, Q)

15: (N(s, a) , Q(s, a) , V (s, a)) ← (N 0 (s, a) , Q 0 (s, a) , V (s, a))

16: A (s) = A (s) ∪ { a }
17: a ← arg max a Q(s, a) + c

√

log N(s)
N(s,a)

18: if | V (s, a) | < k ′ N(s, a) α
′

then

19: (s ′ , r) ∼ G (s, a)

20: if s ′ 	∈ V (s, a) then

21: V (s, a) = V (s, a) ∪ { s ′ }
22: N(s, a, s ′) ← N 0 (s, a, s ′)
23: else

24: N(s, a, s ′) ← N(s, a, s ′) + 1

25: else

26: s ′ ← Sample (N(s, a, ·))
27: q ← R (s, a, s ′) + γ Simulate (s ′ , d − 1)

28: N(s, a) ← N(s, a) + 1

29: Q(s, a) ← Q(s, a) +

q −Q(s,a)
N(s,a)

30: return q

31: function Rollout (s, d)

32: if d = 0 then

33: return 0

34: a ∼ π0 (s)

35: (s ′ , r) ∼ G (s, a)

36: return r + γ Rollout (s ′ , a, d − 1)

w

t

a

I

c

m

t

w

s

w

r

c

d

t

n

t

a

p

s
ontrol u (t) is a piecewise constant function) and there exist ef-

cient solution algorithms that exploit this (e.g., Luo & Bertsimas,

998).

The fluid control approach to the queueing network control

roblem is, at each decision epoch, to do as follows:

1. Set x (0) to reflect the current number of jobs of each class in

the system.

2. Solve problem (10) to obtain the optimal control u

∗(t).

3. At each server s that is idle, serve the non-empty class i of that

server with the highest value of u ∗
i
(0) .

. Monte Carlo tree search

Our review of MCTS is necessarily brief; the reader is referred

o Browne et al. (2012) for a more thorough survey. In particu-

ar, we will focus on a variation of MCTS that employs double pro-

ressive widening , a technique that explicitly controls the branching

actor of the search tree (Couëtoux, Hoock, Sokolovska, Teytaud, &

onnard, 2011). This variation is specifically necessary when the

ction space is continuous or so large that all actions cannot possi-

ly be explored. This is frequently the case in most DRA problems.

e note that there exist other strategies for managing the branch-

ng factor, such as the pruning strategy employed in the “bandit al-

orithm for smooth trees” (BAST) method of Coquelin and Munos

2007) ; we do not consider these here.

We first describe MCTS with double progressive widening in

eneral, and then discuss two particular modifications we have

ade to the algorithm to tailor it to DRAs.

.1. MCTS with double progressive widening

Algorithm 1 provides a pseudocode description of the MCTS al-

orithm. This algorithm involves running many simulations from

he current state while updating an estimate of the state-action

alue function Q (s , a). Each simulation from the current state is

xecuted to a depth of d . We use a generative model G to produce

amples of the next state s ′ and reward r given the current state

 and action a . All of the information about the state transitions

nd rewards is represented by G ; the transition probabilities and

ewards are not used directly. There are three stages in each simu-

ation: search, expansion, and rollout.

Search . If the current state in the simulation is in the set T (ini-

ially empty), we enter the search stage. Otherwise, we proceed to

he expansion stage. During the search stage, we update Q (s , a) for

he states and actions visited and tried in our search. We also keep

rack of the number of times we have visited a state N (s) and the

umber of times we have taken an action from a state N (s , a).

During the search, the first progressive widening controls the

umber of actions considered from a state. To do this, we generate

 new action if | A (s)| < kN (s) α , where k and α are parameters that

ontrol the number of actions considered from the current state

nd A (s) is the set of actions tried from s . When generating a new

ction, we add it to the set A (s), and initialize N (s , a) and Q (s , a)

ith N 0 (s , a) and Q 0 (s , a), respectively. The functions N 0 and Q 0

an be based on prior expert knowledge of the problem; if none

s available, then they can both be initialized to 0. We also ini-

ialize the empty set V (s , a), which contains the set of states s ′
ransitioned to from s when selecting action a . A default strategy

or generating new actions is to randomly sample from candidate

ctions. After potentially generating new actions, we execute the

ction that maximizes

(s, a) + c

√

log N(s)

N(s, a)
,
here c is a parameter that controls the amount of exploration in

he search. The second term is an exploration bonus that encour-

ges selecting actions that have not been tried as frequently.

Next, we draw a sample (s ′ , r) ∼ G (s , a), if | V (s, a) | < k ′ N(s, a) α
′
.

n this second progressive widening step, the parameters k ′ and α′
ontrol the number of states transitioned to from s . If s ′ is not a

ember of V (s , a), we add it to the set V (s , a), initialize R (s , a , s ′)
o r , and initialize N (s , a , s ′) with N 0 (s , a , s

′). If s ′ is in V (s , a), then

e increment N (s , a , s ′). However, if | V (s, a) | ≥ k ′ N(s, a) α
′
, then we

elect s ′ from V (s , a) proportionally to N (s , a , s ′).
Expansion . Once we reach a state not in T , we initialize N (s , a)

ith N 0 (s , a), add the current state to the set T and proceed to the

ollout stage.

Rollout . After the expansion stage, we simply select actions ac-

ording to some rollout (or default) policy π0 until the desired

epth is reached. Typically, rollout policies are stochastic, and so

he action to execute is sampled a ∼ π0 (s). The rollout policy does

ot have to be close to optimal, but it is a way for an expert to bias

he search into promising areas. The expected value is returned

nd is used to update the value for Q (s , a) used by the search

hase.

Simulations are run until some stopping criterion is met, often

imply a fixed number of iterations. We then execute the action

670 D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678

W

Table 1

Default parameters for algorithms.

Method Parameter Value

MCTS Time limit per Iteration 60 seconds

Exploration bonus c 50

Rollout policy FW Heuristic

Depth d 10

Progressive widening, action space α 0.5

Progressive widening, state space α′ 0.2

Progressive widening, action space k 40

Progressive widening, state space k ′ 40

Algorithm 2 (u ′ , u ′ ′) (0.3, 0.3)

RHO Time limit per iteration 60 seconds

Horizon length 10

1

h

t

p

t

s

p

a

s

d

t

n

s

i

t

B

5

s

p

n

p

f

e

5

w

G

m

w

m

o

t

a

that maximizes Q (s , a). Once that action has been executed, we

can rerun MCTS to select the next action.

4.2. Tailoring MCTS to DRAs

We next discuss two modifications we have found to be critical

when applying MCTS to DRAs.

Action generation . As previously mentioned, the default strat-

egy for generating new actions during the search stage of MCTS

involves randomly sampling from all candidate actions. In DRAs

where the action space may be very large, this strategy is ineffi-

cient; we may need to search many actions before identifying a

high-quality choice.

We now describe an alternate scheme for generating actions.

Specifically, consider MCTS after several iterations. The current val-

ues of Q (s , a) provide a (noisy) estimate of the value function

and hence, can be used to approximately identify promising ac-

tions. Consequently, we use these estimates to bias our sampling

procedure through a sampling scheme inspired by genetic algo-

rithm search heuristics (Whitley, 1994). Our strategy, described in

Algorithm 2 , involves generating actions using one of three ap-

Algorithm 2 Action generation.

1: function Getnext (s, Q)

2: u ∼ U(0 , 1)

3: if u < u ′ then

4: a ′ ← Sample (Q(s, ·))
5: a ← Mutate (a ′)
6: else if u < u ′ + u ′′ then

7: a ′ ← Sample (Q(s, ·))
8: a ′′ ← Sample (Q(s, ·))
9: a ← Recombine (a ′ , a ′′)

10: else

11: a ∼ π0 (s)

12: return a

proaches: with probability u ′ an existing action in the search tree

is mutated, with probability u ′ ′ two existing actions in the search

tree are recombined, or with probability 1 − u ′ − u ′′ , a new action

is generated from the default strategy. Mutating involves randomly

changing the allocation of one or resources. Recombining involves

selecting a subset of allocations from two actions and combining

the two subsets. When mutating or recombining, we select the ex-

isting action (or actions) from A (s) using tournament select where

the fitness for each action is proportional to Q (s , a). Our numerical

experiments confirm that our proposed action generation approach

significantly outperforms the default strategies.

Rollout policy . In many papers treating MCTS, it is argued that

even if the heuristic used for the rollout policy is highly subop-

timal, given enough time the algorithm will converge to the cor-

rect state-action value function Q (s , a). In DRAs with combinatorial

structure (and hence, huge state and action spaces), it may take

an extremely long time for this convergence; similar behavior was

observed in Coquelin and Munos (2007) . Indeed, we have observed

for DRAs that having a good initial rollout policy makes a material

difference in the performance of MCTS.

For the tactical wildfire management problem, we consider a

heuristic that involves assigning a weight W (x) to each cell x , de-

fined as

 (x) =

∑

y

R (y)

D (x, y)
, (11)

where D (x , y) is the shortest path between x and y assuming that

the distance between adjacent cells is P (x , y). We compute the

values D (x , y) offline using the Floyd–Warshall algorithm (Floyd,
962), and consequently term this heuristic the FW heuristic. The

euristic performs generally well because it prioritizes allocating

eams to cells that are near large negative reward cells. The rollout

olicy involves selecting the cells that are burning and assigning

eams to the highest weighted cells. We are also able to randomly

ample from the weights to generate candidate actions. In our ex-

eriments, we have observed that the heuristic performs fairly well

nd consequently, may be of independent interest to the wildfire

uppression community.

For the queueing network control problem, in addition to a ran-

om policy, we also consider the so-called c μ heuristic. Under

his heuristic, when a server becomes idle, the class it draws its

ext job from is the class i with the highest value of c i μi (the

ervice rate weighted by the cost of the class). This type of pol-

cy is simple to implement and in many special cases, is known

o be either optimal or asymptotically optimal (see, for example,

uyukkoc, Varaiya, & Walrand, 1985; Van Mieghem, 1995).

. Numerical comparisons for tactical wildfire management

This section presents experiments comparing Monte Carlo tree

earch (MCTS) and the rolling horizon optimization (RHO) ap-

roach. We seek to understand their relative strengths and weak-

esses as well as how the user-defined parameters of each ap-

roach, such as the exploration bonus c for MCTS, affect the per-

ormance of the algorithm. Before proceeding to the details of our

xperiments, we summarize our main insights here:

• Overall, RHO performs as well as or better than MCTS. For even

moderate computational budgets, RHO generates high quality

solutions.
• Although the MCTS approach works well for certain smaller

cases, its performance can degrade for larger cases (with a

fixed, computational budget). Moreover, the dependence of the

algorithm on its underlying hyperparameters is complex. The

optimal choice of the exploration bonus and progressive widen-

ing factors depends both on the rollout heuristic as well as the

available computational budget.

.1. Algorithmic parameters and basic experimental setup

In what follows, we use a custom implementation of MCTS

ritten in C++ and use the mixed-integer optimization software

urobi 5.0 (Gurobi Optimization, Inc., 2013) to solve the RHO for-

ulation. All experiments were conducted on a computational grid

ith 2.2GHz cores with 4GB of RAM in a single-threaded environ-

ent.

Many of our experiments will study the effect of varying vari-

us hyperparameters (like the time limit per iteration) on the solu-

ion quality. Unless otherwise specified in the specific experiment,

ll hyperparameters are set to their baseline values in Table 1 .

D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678 671

p

a

d

m

s

n

t

(

w

l

c

t

P

w

p

Q

c

f

s

|

t

e

r

s

5

c

p

a

r

t

w

i

h

o

s

p

s

b

t

r

F

t

b

F

b

b

e

Table 2

Estimated effects for the MCTS hyperparameters.

FW Heuristic Random suppression

(Intercept) −353903 . 78 ∗∗∗ (0.00) −408969 . 13 ∗∗∗ (0.00)

α = 0 . 5 −3073 . 68 (0.37) 5335.56 (0.16)

α = 0 . 2 7292.33 ∗ (0.03) 4616.83 (0.23)

Depth = 5 34551.16 ∗∗∗ (0.00) 4211.96 (0.14)

Depth = 10 35375.98 ∗∗∗ (0.00) 3952.83 (0.17)

A2 −40434 . 84 ∗∗∗ (0.00) −976.72 (0.71)

c = 10 2857.04 (0.32)

c = 50 6900.73 ∗ (0.02)

c = 100 9366.90 ∗∗ (0.00)

α = 0 . 5 : Depth = 5 4412.72 (0.29) 58653.80 ∗∗∗ (0.00)

α = 0 . 2 : Depth = 5 −11279 . 75 ∗∗ (0.01) 41290.86 ∗∗∗ (0.00)

α = 0 . 5 : Depth = 10 2989.4 (0.48) 65456.71 ∗∗∗ (0.00)

α = 0 . 2 : Depth = 10 −11282 . 11 ∗∗ (0.01) 47508.01 ∗∗∗ (0.00)

α = 0 . 5 : A2 8467.03 ∗ (0.01) 6960.33 ∗ (0.02)

α = 0 . 2 : A2 20363.68 ∗∗∗ (0.00) −1457.66 (0.61)

Depth = 5 : A2 23627.58 ∗∗∗ (0.00)

Depth = 10 : A2 24100.29 ∗∗∗ (0.00)

α = 0 . 5 : c = 10 −2543.39 (0.53)

α = 0 . 2 : c = 10 −983.12 (0.81)

α = 0 . 5 : c = 50 −10139 . 50 ∗ (0.01)

α = 0 . 2 : c = 50 −1250.75 (0.76)

α = 0 . 5 : c = 100 −16684 . 02 ∗∗∗ (0.00)

α = 0 . 2 : c = 100 −674.51 (0.87)

Depth = 5 : A2 12733.89 ∗∗∗ (0.00)

Depth = 10 : A2 12608.70 ∗∗∗ (0.00)

R 2 0.06 0.14

adj. R 2 0.06 0.14

† Significant at p < 0.10.
∗p < 0.05.
∗∗ p < 0 . 01 .
∗∗∗p < 0.001.

See Section 5.2 for details. Baseline should be interpreted as the value of α = 1 ,

Depth of 1, c = 0 , without Algorithm 2 (based on genetic algorithm search heuris-

tics).

w

p

h

p

F

c

o

t

s

e

f

s

o

o

c

a

d

a

g

O

i

m

5

o

m

f

2

To ease comparison in what follows, we generally present the

erformance of each our algorithms relative to the performance of

 randomized suppression heuristic. At each time step, the ran-

omized suppression heuristic chooses |I| cells without replace-

ent from those cells which are currently burning and assigns

uppression teams to them. This heuristic should be seen as a

aive “straw man” for comparisons only. We will also often include

he performance of our more tailored heuristic, the Floyd–Warshall

FW) heuristic, as a more sophisticated straw man.

In our experiments, we consider a k × k grid with a varying re-

ard function. There is a negative one reward received when the

ower left cell is burning and the reward for a cell burning de-

reases by one when traversing one cell up or to the right across

he grid. The fire propagates as described in Section 2 with

 (x, y) =

{
p, if y ∈ N (x)
0 , otherwise,

here p = 0 . 06 . We also assume for this experiment that sup-

ression effort s are successful with an 80% probability—that is,

(x) = 0 . 8 for all x ∈ X .

For a single simulation we randomly generate an initial fire

onfiguration—that is, whether or not each cell is burning and the

uel level in each cell. After generating an initial fire, suppres-

ion then begins according to one of our four approaches with

I| teams. The simulation and suppression effort s continue until

he fire is extinguished or the entire area is burned out. A typical

xperiment will repeat this simulation many times with different

andomly generate initial fire configurations and aggregate the re-

ults.

Our process for initializing the fire in a simulation is as follows:

1. Initialize all of the cells with a fuel level of k /2 p � and seed a

fire in the lower left hand cell.

2. Allow the fire to randomly propagate for k /2 p � steps. Note that

the lower left hand cell will naturally extinguish at the point.

3. Next, scale the fuel levels by a factor of k −0 . 25 . We scale the fuel

levels to reduce the length of experiments where the number

of teams is insufficient to successfully fight the fire.

.2. Tuning Hyperparameters for the MCTS Methodology

The MCTS approach includes a number of hyperparameters to

ontrol the performance of the algorithm. In this section, we ex-

lore the effects of some of these parameters with k = 20 and 4

ssets, and a time limit of 10 s per iteration. We vary the explo-

ation bonus c ∈ {0, 10, 50, 100}, the progressive widening fac-

ors α = α′ ∈ { 1 , 0 . 5 , 0 . 2 } , the depth d ∈ {1, 5, 10}, whether or not

e use Algorithm 2 (based on genetic algorithm search heuristics)

n action generation, and whether we use the random suppression

euristic or the FW heuristic in the rollout. For each combination

f hyperparameters, we run 256 simulations and aggregate the re-

ults. Fig. 3 presents box plots of the cumulative reward; for sim-

licity, we focus on depth d = 5 , as the insights are qualitatively

imilar for the two other values of d . The top panel groups these

ox plots by the exploration bonus c , while the bottom one groups

he same plots by the heuristic used.

Several features are noticeable. First, the effect of the explo-

ation bonus c is small and depends on the heuristic used. For the

W heuristic, the effect is negligible. One explanation for this fea-

ures is that the FW heuristic is fairly strong on its own. Hence, the

enefits from local changes to this policy are somewhat limited.

or the random suppression heuristic, there may be some effect,

ut it seems to vary with α. When α = 0 . 2 , increased exploration

enefits the random suppression heuristic, but when α = 0 . 5 , less

xploration is preferred.
Second, from the second panel, in all cases it seems that MCTS

ith the FW heuristic outperforms MCTS with the random sup-

ression heuristic. The benefit of Algorithm 2 in action generation,

owever, is less clear. Using Algorithm 2 does seem to improve the

erformance of the random suppression heuristic in some cases.

or the FW heuristic, there seems to be little benefit, likely be-

ause the FW heuristic already generates fairly good actions on its

wn.

To assess the statistical significance of these differences, we fit

wo separate linear regression model, one for the random suppres-

ion heuristic and one for the FW heuristic. We simplify the mod-

ls using backward stepwise variable deletion, beginning with the

ull model with second-order interactions. Table 2 displays the re-

ults. In each column of values, the first value indicates the size

f the effect, while the parenthesized value indicates the p -value

f the effect (how statistically significant the effect is). One can

heck that the features we observed graphically from the box plots

re indeed significant. Moreover, the random suppression heuristic

emonstrates interesting second-order effects between the depth

nd α. The performance improves substantially when the depth is

reater than one and we restrict the size of the searched actions.

ne explanation is that both parameters serve to increase the qual-

ty of the search tree, i.e., its depth, and the accuracy of the esti-

ate at each of the searched nodes.

.3. State space size

We first study the performance of our algorithms as the size

f the state space grows. We simulate 256 runs of each of our

ethods with either 4 or 8 suppression teams, using our de-

ault values of the hyperparameters and varying k ∈ {8, 12, 16,

0, 30}.

672 D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678

Fig. 3. The cumulative reward of the MCTS algorithm for various values organized by the exploration parameter c and the rollout heuristic. “Random” and “FW” refer to the

random burn and Floyd–Warshall heuristics. “A2” indicates that we additionally use our Algorithm 2 (based on genetic algorithm search heuristics) in the action generation

phase.

m

t

i

p

e

s

i

c

g

R

b

c
Figs. 4 a and b show the average and maximum solution time

per iteration of the RHO methodology when requesting at most

120 seconds of computation time. Notice that for most instances,

the average time is well below the threshold – in these instances

the underlying mixed-integer program is solved to optimality. For

some instances, though, there are a few iterations which require

much longer to find a feasible integer solution (cf. the long upper-

tail in Fig. 4 b). Consequently, we compare our RHO method to

MCTS with 60 seconds, 90 seconds and 120 seconds of computa-

tion time.

A summary of the results is seen in Fig. 5 a and b. Sev-

eral features are evident in the plot. First, all three methods

seem to outperform the FW heuristic, but there seems to only

be a small difference between the three MCTS runs. The RHO
ethod does seem to outperform MCTS method, especially for

ail-hard instances. Namely, the lower whisker on the RHO plot

s often shorter than the corresponding whisker on the MCTS

lots.

To assess some of the statistical significance of these differ-

nces, we fit additive effects models for four and eight team

eparately. In both cases, there are no significant second-order

nteractions. The coefficients of the first-order interactions and

orresponding p -values are shown in Table 3 . The values sug-

est that the three MCTS methods are very similar and that the

HO method with a time limit of 60 seconds does outperform

oth.

In summary, these results suggest that MCTS and RHO perform

omparably for small state spaces, but as the state space grows,

D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678 673

Fig. 4. Average and maximum iteration solution time with 8 teams and a desired

time limit of 120 seconds (dotted line). Instances which exceed their allotted time

are typically not solved to optimality.

R

g

5

a

fi

Table 3

Estimated effects for the percentage improvement relative to the random

heuristic.

|I| = 8 |I| = 8

Coefficient p -value Coefficient p -value

(Intercept) 7.80 ∗∗∗ (0.00) 16.94 ∗∗∗ (0.00)

k = 12 14.48 ∗∗∗ (0.00) 12.02 ∗∗∗ (0.00)

k = 16 21.89 ∗∗∗ (0.00) 9.76 ∗∗∗ (0.00)

k = 20 19.48 ∗∗∗ (0.00) 6.08 ∗∗∗ (0.00)

k = 30 10.86 ∗∗∗ (0.00) −2 . 22 ∗∗∗ (0.00)

MCTS (120 seconds) 0.87 ∗ (0.03) 3.03 ∗∗∗ (0.00)

MCTS (90 seconds) 0.88 ∗ (0.03) 2.89 ∗∗∗ (0.00)

MCTS (60 seconds) 0.83 ∗ (0.04) 2.74 ∗∗∗ (0.00)

RHO 2.22 ∗∗∗ (0.00) 3.80 ∗∗∗ (0.00)

R 2 0.47 0.21

adj. R 2 0.47 0.21

† Significant at p < 0.10.
∗p < 0.05.
∗∗p < 0.01.
∗∗∗p < 0.001.

For details, see Section 5.3 . The intercept should be interpreted as baseline

of k = 8 with the FW heuristic.

i

R

o

HO begins to outperform MCTS, with the magnitude of the edge

rowing with the state space size.

.4. Action space size

In this set of experiments, we are interested in comparing RHO

nd MCTS as the size of the grid (and thus the state space) is

xed, and the number of teams (and thus the action space size)
Fig. 5. Performance as a func
ncreases. We will see that as the action space size grows large,

HO performs increasingly better than MCTS; moreover, the rate

f increase is greater for larger grids.
tion of state space size.

674 D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678

Fig. 6. RHO average solution times.

Fig. 7. Performance as function of number of suppression teams, k = 10.

Fig. 8. Performance as a function of number of suppression teams, k = 20.

Table 4

Estimated effects for MCTS and RHO with varying number of

teams.

Coefficients p -value

(Intercept) 23.40 ∗∗∗ (0.00)

8 Teams 3.92 ∗∗∗ (0.00)

16 Teams 4.79 ∗∗∗ (0.00)

32 Teams −10 . 84 ∗∗∗ (0.00)

MCTS 3.01 ∗∗∗ (0.00)

RHO 4.55 ∗∗∗ (0.00)

8 Teams : MCTS −1 . 93 † (0.10)

16 Teams : MCTS −4 . 36 ∗∗∗ (0.00)

32 Teams : MCTS −5 . 86 ∗∗∗ (0.00)

8 Teams : RHO −1.49 (0.20)

16 Teams : RHO −3 . 19 ∗∗ (0.01)

32 Teams : RHO −4 . 02 ∗∗∗ (0.00)

R 2 0.36

adj. R 2 0.36

† Significant at p < 0.10.
∗p < 0.05.
∗∗p < 0.01.
∗∗∗p < 0.001.

See also Section 5.4 . The intercept should be interpreted as

the performance of four teams under the FW algorithm.

h

p

m

r

F

t

p

f

f

t

o

t

T

h

p

s

t

v

a

s

d

R

5

t
Intuition suggests that the performance of the MCTS algorithm

is highly dependent on the magnitude of the action branching fac-

tor, i.e., the number of actions available from any given state. As

discussed in Section 4 , without progressive widening, when the ac-

tion branching factor is larger than the number of iterations, the

MCTS algorithm will only expand the search tree to depth one.

Even with progressive widening, choosing good candidate actions

is critical to growing the search tree in relevant directions. A sim-

ple calculation using Stirling’s approximation confirms that for the

MDP outlined in Section 2 , the action branching factor at time t is

given by

N B (t) |I|
|I| ! ≈

(
e · N B (t)

|I|
)|I| √

2 π |I| , (12)

where N B (t) is the number of cells that are burning at time t . For

even medium sized-instances, this number is extremely large. Con-

sequently, in this section we study the performance of our algo-

rithms with respect to the action branching factor.

We have already seen initial results in Section 5.2 suggesting

that both our progressive widening and Algorithm 2 for action gen-

eration improve upon the base MCTS algorithm. It remains to see

how MCTS with these refinements compares to RHO. We compute

the relative improvement of the MCTS and RHO approaches over

the randomized suppression heuristic with k = 10 .

Recall that it is not possible to control for the exact time used

by the RHO algorithm. Fig. 6 a shows a box-plot of the average time

per iteration for the RHO approach. Based on this plot, we feel

that comparing the results to the MCTS algorithm with 60 seconds

of computational time is a fair comparison. Fig. 7 summarizes the

average relative improvement for each our methods for k = 10 as

the number of teams varies. From this plot, we can see that the

relative performance of all our methods degrades as the number

of teams become large. This is principally because the randomized

suppression heuristic improves with more teams. Although the FW
euristic is clearly inferior, the remaining approaches appear to

erform similarly.

To try and isolate more significant differences between the

ethodologies, we re-run the above experiment with k = 20 . The

esults can be seen in Fig. 8 and the average solution times in

ig. 6 b. In contrast with the previous experiment, RHO appears

o outperform MCTS. Interestingly, although MCTS seems to out-

erform the FW heuristic for a small number of teams, it per-

orms worse for more teams. To test the significance of these dif-

erences, we fit a linear regression model for the improvement over

he randomized suppression heuristic as a function of the number

f teams, the algorithm used, and potential interactions between

he number of teams and the algorithm used. The results are in

able 4 . The intercept value is the baseline, fitted value of the FW

euristic policy for four teams. From Table 4 , we see that RHO out-

erforms FW for all choices of numbers of teams with statistical

ignificance, but MCTS is statistically worse than FW with 16 or 32

eams.

In summary, the differences between RHO and MCTS become

isible only when the grid size k is large, i.e., when the instances

re sufficiently “difficult” to solve. It appears that although progres-

ive widening and Algorithm 2 for action selection partially ad-

ress the challenges of a large action state branching factor, the

HO approach is better suited to these instances.

.5. Inexact calibration

A major qualitative difference between RHO and MCTS is in

heir information requirements. MCTS only requires access to a

D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678 675

g

o

e

m

o

fi

o

t

w

s

p

w

s

t

c

o

i

1

|

f

h

t

f

p

s

r

f

n

a

h

fl

p

c

a

S

e

f

p

i

p

a

t

s

s

b

h

s

t

c

T

t

p

n

e

a

t

t

m

p

t

a

s

Fig. 9. Performance (measured as improvement over the random suppression

heuristic) for MCTS, exact RHO and inexact RHO with S ∈ {10, 100, 10 0 0}.

Table 5

Default parameters for MCTS.

Parameter Value

Num. trajectories 20

Exploration bonus 20

Depth 10

Progressive widening, action space α 0.01

Progressive widening, state space α′ 0.01

Progressive widening, action space k 5

Progressive widening, state space k ′ 5

6

6

o

p

l

o

M

c

m

T

s

t

t
enerative model, from which one samples transitions. On the

ther hand, RHO requires one to be able to specify certain param-

ters (e.g., the transition probabilities); in some applications, this

ay be difficult. In the prior experiments, the ζ t (x , i) parameters

f the RHO problem (4), which model the transmission rates of

re, were calibrated using the true transition probabilities (see the

nline supplement). One could argue that calibrating RHO using

he true transition probabilities might unrealistically endow RHO

ith better performance and that it might be an unfair compari-

on to MCTS, which never works directly with the true transition

robabilities.

To investigate this, we consider another set of experiments

here we compare MCTS and RHO against an “imperfect” ver-

ion of RHO that is calibrated inexactly, using sampled transi-

ions. We fix a number of samples S , we sample S transitions ac-

ording to P (x , y), and compute a sample-based estimate ˆ P (x, y)

f P (x , y), which we then use to calibrate ζ t (x , y) as described

n the online supplement. We test sample sizes S ∈ {10, 100,

0 0 0}. We test grid sizes k ∈ {8, 16} and suppression team sizes

I| ∈ { 4 , 8 } , and conduct 100 repetitions. We measure the per-

ormance of each policy relative to the randomized suppression

euristic. Note that the inexact RHO policies are exposed to the

rue dynamics, as are the exact RHO and MCTS policies; the dif-

erence now is that the exact RHO policy uses the true transition

robabilities, whereas the sample-based RHO policy bases its deci-

ions on the inexact transition probabilities. We note that in each

epetition, the sample-based RHO policy is only trained once be-

ore the start of the problem horizon; the estimates ˆ P (x, y) are

ot dynamically updated with each period of the problem. We

lso emphasize that MCTS, as in the previous experiments, still

as access to the exact generative model and is tested in an of-

ine manner; it does not update its generative model with each

eriod.

Fig. 9 shows the performance of MCTS, RHO and the inexactly

alibrated RHO. From this figure, we can see that although there

re some cases where the performance of RHO deteriorates when

 is low, in general there is very little variation between differ-

nt values of S , and the sample-based RHO exhibits similar per-

ormance to the exact RHO. To understand the reason behind this

henomenon, we examined the actions prescribed by the RHO pol-

cy. Empirically, we often observed that the solution to the MO

roblem (4) would assign suppression teams to burning cells that

re on the boundary of the fire, as opposed to cells in the in-

erior of the fire. Intuitively, such a policy should do well, irre-

pective of the precise transition dynamics: allocating a suppres-

ion team to a burning cell with non-burning neighbors is helpful

ecause it prevents further new cells from igniting; on the other

and, allocating a suppression team to a burning cell completely

urrounded by other burning cells is not helpful, because even if

he team succeeds in suppressing the fire, the neighboring burning

ells make it likely that the cell will re-ignite in the next period.

his property of problem (4) seems to be insensitive to the transi-

ion probabilities used to calibrate the ζ t (x , y) parameters and ap-

ears to be a feature of the deterministic continuous intensity dy-

amics used in problem (4). As a result, RHO can still perform well,

ven though the transition probabilities are not known with full

ccuracy.

Overall, the results of this experiment suggest that, in this par-

icular DRA application, the requirement of exact knowledge of the

ransition dynamics can be relaxed with virtually no loss in perfor-

ance. Of course, in other DRA problems one may observe reduced

erformance from using a sample-based RHO approach compared

o the exact RHO approach. A more in-depth comparison of MCTS

nd RHO in this regime is an interesting direction for future re-

earch.

t

. Numerical comparisons for queueing network control

.1. Background

For our experiments, we use the same custom implementation

f MCTS in C++ used in Section 5 and for the fluid (RHO) ap-

roach, we use the results from Bertsimas, Nasrabadi, and Pascha-

idis (2015) , which were obtained using a custom implementation

f the solution approach of Luo and Bertsimas (1998) in C. All

CTS experiments were conducted on a 2.6 gigahertz quad-core

omputer with 16 gigabytes of RAM in a single-threaded environ-

ent.

In Table 5 , we specify the parameters of the MCTS approach.

hese parameters were chosen through preliminary testing that

uggested good performance and comparable timing behavior to

he fluid method. For action generation, we consider a random ac-

ion generation approach. For the rollout policy, we will consider

he random policy and the c μ policy described in Section 4.2 .

676 D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678

Table 6

Average long-run number of jobs in system for the criss-cross queueing network

under different methods.

Parameter set Random c μ MCTS-random MCTS- c μ Fluid

I.L. 0.678 0.679 0.681 0.677 0.678

B.L. 0.858 0.859 0.856 0.856 0.857

I.M. 2.167 2.170 2.168 2.160 2.162

B.M. 3.005 3.006 3.012 2.983 2.965

I.H. 10.359 10.470 10.430 10.546 10.398

B.H. 18.157 18.097 17.910 18.229 18.430

Table 7

Average long-run number of jobs in system for six-class queueing network under

different methods.

Parameter set Random c μ MCTS-random MCTS- c μ Fluid

I.L. 0.780 0.748 0.756 0.757 0.750

B.L. 0.965 0.928 0.938 0.939 0.923

I.M. 2.728 2.355 2.433 2.442 2.301

B.M. 3.807 3.235 3.319 3.320 3.024

I.H. 14.654 9.452 9.561 9.736 9.435

B.H. 24.695 18.167 18.425 17.882 15.670

Fig. 10. Six-class network.

Fig. 11. The extended six-class network.

Table 8

Average long-run number of jobs in system for extended six-class queueing network

under different methods.

Num. servers m Random c μ MCTS-random MCTS- c μ Fluid

2 24.315 18.296 19.005 17.948 15.422

3 38.891 25.425 27.784 25.861 26.140

4 51.453 35.721 36.060 36.452 38.085

5 67.118 43.314 44.905 45.727 45.962

6 78.830 53.801 55.581 55.315 56.857

7 91.218 60.743 65.638 66.614 64.713

t

s

e

M

t

b

f

w

6

n

s

c

t

a

P

f

(

s

a

c

a

n

i

s

w

m

In what follows, we will compare the MCTS and the fluid

optimization approaches on the four example network studied

in Bertsimas, Nasrabadi, and Paschalidis (2015) . The insights that

emerge from this computational study can be summarized as fol-

lows:

• MCTS and the fluid approach perform comparably on the criss-

cross network (two servers, three job classes) and six-class net-

work (two servers, three job classes per server).
• For the extended six-class network, MCTS tends to slightly out-

perform the fluid approach, while for the reentrant network,

the fluid approach significantly outperforms MCTS. Overall, it

seems that on large networks with complicated topologies, the

fluid approach exhibits an edge over MCTS.
• In general, MCTS with the random rollout is able to significantly

improve on the random policy, but MCTS with the c μ rollout is

unable to improve on the basic c μ policy.

6.2. Criss-cross network

The first network that we study is the example criss-cross net-

work shown in Fig. 2 in Section 2.2 . We consider the six different

sets of values from Bertsimas, Nasrabadi, and Paschalidis (2015) for

the arrival rates λ1 and λ2 and the service rates μ1 , μ2 and μ3 .

Table 7 displays the results. For this network, we can see that

the methods are in general comparable and achieve very similar

performance. In the B.H. case, both MCTS methods outperform the

fluid method – for example, MCTS with random rollout attains a

value of 17.910 compared to 18.430 for the fluid method, which

is a difference of over 2% relative to the fluid method. In gen-

eral, each MCTS variant does not appear to perform significantly

differently from its underlying rollout policy; in some cases the

MCTS method performs worse than its underlying rollout policy

(e.g., MCTS- c μ for I.H. performs worse than c μ for the same pa-

rameter set), while in some cases MCTS offers a considerable im-

provement over the underlying rollout (e.g., MCTS-random for B.H.

performs better than the random policy alone).

6.3. Six-class network

In this experiment, we consider the six-class network from

Bertsimas, Nasrabadi, and Paschalidis (2015) . The structure of the

network is shown in Fig. 10 . We consider the six different sets

of parameter values from Bertsimas, Nasrabadi, and Paschalidis

(2015) .
Table 7 displays the results. From this table, we can see that

he fluid method generally performs better than MCTS. The most

ignificant example is B.H. where the fluid method achieves an av-

rage number of jobs of 15.670 compared to 18.425 and 17.882 for

CTS-random and MCTS- cμ, respectively. In general, MCTS with

he random rollout significantly outperforms the random policy,

ut MCTS with the c μ rollout does not always improve on the per-

ormance of the c μ policy on its own and in general is slightly

orse.

.4. Extended six-class network

We now study a more complicated extension of the six class

etwork. In particular, we assume that the servers repeat, as

hown in Fig. 11 . We assume that each server is associated with 3

lasses (i.e., in Fig. 11 , n = 3). The only external arrivals to the sys-

em are at classes 1 and 3, and the arrival rates for those classes

re the same as in parameter set B.H. (see Bertsimas, Nasrabadi, &

aschalidis, 2015) for the six-class network. The service rates also

ollow the structure given in Bertsimas, Nasrabadi, and Paschalidis

2015) .

Table 8 compares the different methods as the number of

ervers m varies from 2 to 7. From this table, we can see that

side from m = 2 and m = 7 , MCTS with either the random or the

 μ rollout policy performs better than the fluid method; for m = 2

nd m = 7 , the fluid method performs better. As in the six-class

etwork, MCTS-random significantly improves on the random pol-

cy, but MCTS- c μ generally performs slightly worse than the ba-

ic c μ policy. It turns out for this network that the c μ policy,

ith the exception of m = 2 , generally performs the best of all the

ethods.

D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678 677

Fig. 12. Reentrant queueing network.

Table 9

Average long-run number of jobs in system for reentrant queueing network under

different methods.

Num. servers m Random c μ MCTS-random MCTS- c μ Fluid

2 25.076 18.199 17.991 17.796 15.422

3 37.908 26.937 27.233 26.257 25.955

4 50.940 34.934 37.194 36.734 32.014

5 64.273 42.387 45.629 44.866 40.113

6 79.165 51.945 57.189 54.682 48.781

7 92.672 59.958 67.531 63.696 54.711

6

p

s

a

t

t

s

s

d

v

t

e

fl

r

r

l

t

7

p

fi

m

i

d

a

p

r

fi

t

M

s

i

g

p

o

i

a

v

(

h

i

w

o

u

s

m

o

s

f

A

f

i

a

C

t

b

M

t

a

S

f

R

A

A

A

A

B

B

B

B

B

B

B

B

B

C

C

C

C

.5. Reentrant network

Finally, we consider a reentrant network, where after a job

asses through the m servers, it re-enters the system at the first

erver and is processed again two more times (as a class 2 job

nd a class 3 job) before exiting the system. Fig. 12 displays the

opology of this queueing network. The arrival rate of class 1 and

he service rates of the classes are the same as for the extended

ix-class network of the previous section. We vary the number of

ervers from m = 2 to m = 7 .

Table 9 displays the average number of jobs in the system un-

er the different types of policies as the number of servers m

aries from 2 to 7. For all values of m , the fluid policy performs

he best, and significantly outperforms both versions of MCTS. For

xample, for m = 7 , MCTS- c μ achieves a value of 63.696 while the

uid method achieves a value of 54.711 – a difference of over 14%

elative to MCTS- c μ. As in the extended six-class network, MCTS-

andom is able to provide a significant improvement over the base-

ine random policy, but MCTS- c μ generally does not improve on

he basic c μ policy, especially for higher values of m .

. Conclusion

In this study, we consider two dynamic resource allocation

roblems: one concerning tactical wildfire management, in which

re spreads stochastically on a finite grid and the decision maker

ust allocate resources at discrete epochs to suppress it, and one

nvolving queueing network control, where a decision maker must

etermine which jobs are to be served by the servers as jobs arrive

nd pass through the network. We study two different solution ap-

roaches: one based on Monte Carlo tree search, and one based on

olling horizon optimization.

Our study makes two broad methodological contributions. The

rst of these contributions is to the understanding of MCTS: to

he best of our knowledge, this study is the first application of

CTS to dynamic resource allocation problems. Our numerical re-

ults uncover some interesting insights into how MCTS behaves

n relation to parameters such as the exploration bonus, the pro-

ressive widening parameters and others, as well as larger com-

onents such as the method of action generation and the roll-

ut heuristic. Our results show that these components are highly

nterdependent—for example, our results show that the choices of

ction generation method and progressive widening factor become
ery important when the rollout heuristic is not strong on its own

e.g., a random heuristic) but are less valuable when the rollout

euristic is strong to begin with (e.g., the Floyd–Warshall heuristic

n the case of the wildfire management problem). These insights

ill be valuable for practitioners interested in applying MCTS to

ther problems.

The second broad methodological contribution is towards the

nderstanding of the relative merits of MCTS and RHO. Our results

how that while both methodologies exhibit comparable perfor-

ance for smaller instances, for larger instances, the mathematical

ptimization approach exhibits a significant edge. Initial evidence

uggests this edge may be related more closely to action branching

actor than the state space branching factor.

cknowledgments

The authors thank the two anonymous referees for their help-

ul comments which have greatly improved the paper. This work

s sponsored by the Assistant Secretary of Defense for Research

nd Engineering, ASD(R&E), under Air Force Contract #FA8721-05-

-0 0 02. Opinions, interpretations, conclusions, and recommenda-

ions are those of the authors and are not necessarily endorsed

y the United States Government. The authors acknowledge Robert

oss for excellent research assistance. The work of the fifth au-

hor was supported by a PGS-D award from the Natural Sciences

nd Engineering Research Council (NSERC) of Canada.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ejor.2017.05.032 .

eferences

cimovic, J. , & Graves, S. (2012). Making better fulfillment decisions on the fly in

an online retail environment. Technical Report Working Paper . Boston, MA: Mas-
sachusetts Institute of Technology .

rneson, B. , Hayward, R. B. , & Henderson, P. (2010). Monte Carlo tree search in hex.
IEEE Transactions on Computational Intelligence and AI in Games, 2 (4), 251–258 .

uer, P. , Cesa-Bianchi, N. , & Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47 (2–3), 235–256 .

vram, F. , Bertsimas, D. , & Ricard, M. (1995). Fluid models of sequencing problems

in open queueing networks: An optimal control approach. Institute for Mathe-
matics and its Applications , 199–234 .

ertsimas, D. , Gupta, S. , & Lulli, G. (2014). Dynamic resource allocation: A flexi-
ble and tractable modeling framework. European Journal of Operational Research,

236 (1), 14–26 .
ertsimas, D. , Nasrabadi, E. , & Paschalidis, I. C. (2015). Robust fluid processing net-

works. IEEE Transactions on Automatic Control, 60 (3), 715–728 .

ertsimas, D. , Paschalidis, I. C. , & Tsitsiklis, J. N. (1994). Optimization of multiclass
queueing networks: Polyhedral and nonlinear characterizations of achievable

performance. The Annals of Applied Probability , 43–75 .
ertsimas, D. , & Stock Patterson, S. (1998). The air traffic flow management problem

with enroute capacities. Operations Research, 46 (3), 406–422 .
oychuck, D. , Braun, W. J. , Kulperger, R. J. , Krougly, Z. L. , & Stanford, D. A. (2008). A

stochastic forest fire growth model. Environmental and Ecological Statistics, 1 (1),

1–19 .
racmort, K. (2013). Wildfire management: Federal funding and related statistics.

Technical Report . Congressional Research Service .
rowne, C. B. , Powley, E. , Whitehouse, D. , Lucas, S. M. , Cowling, P. I. , Rohlfshagen, P. ,

et al. (2012). A survey of Monte Carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4 (1), 1–43 .

uyukkoc, C. , Varaiya, P. , & Walrand, J. (1985). The c μ rule revisited. Advances in

Applied Probability, 17 (1), 237–238 .
uzacott, J. A. , & Shanthikumar, J. G. (1993). Stochastic models of manufacturing sys-

tems . Englewood Cliffs, NJ: Prentice Hall .
iancarini, P. , & Favini, G. P. (2010). Monte Carlo tree search in Kriegspiel. Artificial

Intelligence, 174 (11), 670–684 .
iocan, D. F. , & Farias, V. (2012). Model predictive control for dynamic resource al-

location. Mathematics of Operations Research, 37 (3), 501–525 .
oquelin, P.-A. , & Munos, R. (2007). Bandit algorithms for tree search. In Proceed-

ings of the twenty-third conference annual conference on uncertainty in artificial

intelligence (UAI-07) (pp. 67–74). Corvallis, Oregon: AUAI Press .
ouëtoux, A., Hoock, J.-B., Sokolovska, N., Teytaud, O., & Bonnard, N. (2011).

Continuous upper confidence trees. In Proceedings of the international con-
ference on learning and intelligent optimization (pp. 433–445). doi: 10.1007/

978- 3- 642- 25566- 3 _ 32 .

http://dx.doi.org/10.1016/j.ejor.2017.05.032
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0016
http://dx.doi.org/10.1007/978-3-642-25566-3_32

678 D. Bertsimas et al. / European Journal of Operational Research 263 (2017) 664–678

H

K

M

N

P

R

T

V

W

Coulom, R. (2007). Efficient selectivity and backup operators in Monte-Carlo tree
search. In Proceedings of the Computers and games (pp. 72–83). Springer .

Dai, J. G. (1995). On positive harris recurrence of multiclass queueing networks: a
unified approach via fluid limit models. The Annals of Applied Probability , 49–77 .

Enzenberger, M. , Muller, M. , Arneson, B. , & Segal, R. (2010). Fuego—an open-source
framework for board games and Go engine based on Monte Carlo tree search.

IEEE Transactions on Computational Intelligence and AI in Games, 2 (4), 259–270 .
Eyerich, P. , Keller, T. , & Helmert, M. (2010). High-quality policies for the canadian

traveler’s problem. In Proceedings of the third annual symposium on combinatorial

search .
Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5 (6),

345. doi: 10.1145/367766.36 816 8 .
Fried, J. S., Gilless, J. K., & Spero, J. (2006). Analysing initial attack on wildland fires

using stochastic simulation. International Journal of Wildland Fire, 15 , 137–146 .
http://dx.doi.org/10.1071/WF05027.

Gallego, G. , & van Ryzin, G. (1994). Optimal dynamic pricing of inventories with

stochastic demand over finite horizons. Management Science, 40 (8), 999–1020 .
Gelly, S., & Silver, D. (2011). Monte-Carlo tree search and rapid action value estima-

tion in computer Go. Artificial Intelligence, 175 (11), 1856–1875. http://dx.doi.org/
10.1016/j.artint.2011.03.007 .

Gurobi Optimization, Inc. (2013). Gurobi optimizer reference manual. http://www.
gurobi.com .

Harchol-Balter, M. (2013). Performance modeling and design of computer systems:

Queueing theory in action . Cambridge University Press .
Harrison, J. M. (1988). Brownian models of queueing networks with heteroge-

neous customer populations. In Proceedings of the Stochastic differential systems,
stochastic control theory and applications (pp. 147–186). Springer .
u, X. , & Ntaimo, L. (2009). Integrated simulation and optimization for wildfire
containment. ACM Transactions on Modeling and Computer Simulation, 19 (4),

19:1–19:29 .
ocsis, L. , & Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In Proceed-

ings of the European conference on machine learning (pp. 282–293). Springer .
Luo, X. , & Bertsimas, D. (1998). A new algorithm for state-constrained separated

continuous linear programs. SIAM Journal on control and optimization, 37 (1),
177–210 .

iši ́c, B. , Sporns, O. , & McIntosh, A. R. (2014). Communication efficiency and con-

gestion of signal traffic in large-scale brain networks. PLoS Computational Biol-
ogy, 10 (1), e1003427:1–10 .

taimo, L., Arrubla, J. A. G., Stripling, C., Young, J., & Spencer, T. (2012). A stochas-
tic programming standard response model for wildfire initial attack planning.

Canadian Journal of Forest Research, 42 (6), 987–1001. doi: 10.1139/x2012-032 .
Ntaimo, L. , Gallego-Arrubla, J. A. , Jianbang, G. , Stripling, C. , Young, J. , &

Spencer, T. (2013). A simulation and stochastic integer programming approach

to wildfire initial attack planning.. Forest Science, 59 (1), 105–117 .
ullan, M. C. (1993). An algorithm for a class of continuous linear programs. SIAM

Journal on Control and Optimization, 31 (6), 1558–1577 .
ubin, J., & Watson, I. (2011). Computer poker: A review. Artificial Intelligence,

175 (56), 958–987. http://dx.doi.org/10.1016/j.artint.2010.12.005 .
ymstra, C. , Bryce, R. , Wotton, B. , Taylor, S. , & Armitage, O. (2010). Development and

structure of prometheus: The Canadian wildland fire growth simulation model.

Information Report NOR-X-417 . Canadian Forest Service .
an Mieghem, J. A. (1995). Dynamic scheduling with convex delay costs: The gen-

eralized c—mu rule. Annals of Applied Probability, 5 (3), 809–833 .
hitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4 (2), 65–

85. doi: 10.10 07/BF0 0175354 .

http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0021
http://dx.doi.org/10.1145/367766.368168
http://dx.doi.org/10.1071/WF05027
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0024
http://dx.doi.org/10.1016/j.artint.2011.03.007
http://www.gurobi.com
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0026
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0026
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0027
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0027
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0028
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0028
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0028
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0028
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0029
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0029
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0029
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0029
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0030
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0030
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0030
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0030
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0031
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0031
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0031
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0031
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0031
http://dx.doi.org/10.1139/x2012-032
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0033
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0034
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0034
http://dx.doi.org/10.1016/j.artint.2010.12.005
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0036
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0037
http://refhub.elsevier.com/S0377-2217(17)30460-5/sbref0037
http://dx.doi.org/10.1007/BF00175354

	A comparison of Monte Carlo tree search and rolling horizon optimization for large-scale dynamic resource allocation problems
	1 Introduction
	2 Problem definition
	2.1 Tactical wildfire management
	2.2 Control of queueing networks

	3 A rolling horizon optimization approach
	3.1 Approach for tactical wildfire management
	3.2 Approach for queueing network control

	4 Monte Carlo tree search
	4.1 MCTS with double progressive widening
	4.2 Tailoring MCTS to DRAs

	5 Numerical comparisons for tactical wildfire management
	5.1 Algorithmic parameters and basic experimental setup
	5.2 Tuning Hyperparameters for the MCTS Methodology
	5.3 State space size
	5.4 Action space size
	5.5 Inexact calibration

	6 Numerical comparisons for queueing network control
	6.1 Background
	6.2 Criss-cross network
	6.3 Six-class network
	6.4 Extended six-class network
	6.5 Reentrant network

	7 Conclusion
	 Acknowledgments
	 Supplementary material
	 References

