
TRANSPORTATION SCIENCE
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0041-1655 |eissn 1526-5447 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

The Airlift Planning Problem *

Dimitris Bertsimas
Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, 77 Massachusetts

Avenue, Cambridge, MA, 02139; dbertsim@mit.edu

Allison Chang
Lincoln Laboratory, Massachusetts Institute of Technology; 244 Wood Street, Lexington, MA, 02420; aachang@ll.mit.edu

Velibor V. Mǐsić
Anderson School of Management, University of California, Los Angeles, 110 Westwood Plaza, Los Angeles, CA, 90095;

velibor.misic@anderson.ucla.edu

Nishanth Mundru
Operations Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139;

nmundru@mit.edu

The United States Transportation Command (USTRANSCOM) is responsible for planning and executing
the transportation of United States military personnel and cargo by air, land and sea. The airlift planning
problem faced by the air component of USTRANSCOM is to decide how requirements (passengers and
cargo) will be assigned to the available aircraft fleet and the sequence of pickups and dropoffs that each
aircraft will perform in order to ensure that the requirements are delivered with minimal delay and with
maximum utilization of the available aircraft. This problem is of significant interest to USTRANSCOM due
to the highly time-sensitive nature of the requirements that are typically designated for delivery by airlift,
as well as the very high cost of airlift operations. At the same time, the airlift planning problem is extremely
difficult to solve due to the combinatorial nature of the problem and the numerous constraints present in the
problem (such as weight restrictions and crew rest requirements). In this paper, we propose an approach for
solving the airlift planning problem faced by USTRANSCOM based on modern, large-scale optimization. Our
approach relies on solving a large-scale mixed-integer programming model that disentangles the assignment
decision (which aircraft will pickup and deliver which requirement) from the sequencing decision (in what
order the aircraft will pickup and deliver its assigned requirements), using a combination of heuristics and
column generation. Through computational experiments with both a simulated data set and a planning data
set provided by USTRANSCOM, we show that our approach leads to high-quality solutions for realistic
instances (e.g., 100 aircraft and 100 requirements) within operationally feasible time frames. Compared to
a baseline approach that emulates current practice at USTRANSCOM, our approach leads to reductions in
total delay and aircraft time of 8 to 12% in simulated data instances and 16 to 40% in USTRANSCOM’s
planning instances.

Key words : pickup and delivery with time windows; mixed-integer programming; column generation; local
search; construction heuristics

1. Introduction
The United States Transportation Command (USTRANSCOM) is the main entity responsible for
the transportation of personnel and cargo for the United States military across the globe. Of the
three modes of transportation employed by USTRANSCOM – air, land and sea – transportation
by air is often the most efficient means of delivering requirements (passengers and cargo) and thus
is often the mode of choice for many high-priority and short-notice missions.

The planning of airlift missions is of critical importance to USTRANSCOM, for two reasons.
First, due to the time-sensitive nature of requirements transported by air, a primary concern for

* This material is based upon work supported under Air Force Contract No. FA8721-05-C-0002. Any opinions, findings, conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily reflect the views of the U.S. Air Force.

1

Bertsimas et al.: The Airlift Planning Problem
2 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

USTRANSCOM is that requirements be picked up and delivered within their predefined time
windows with minimal or no delay. Second, transporting requirements by air is expensive: a recent
RAND study estimates that airlift missions cost between $9,000 and $12,000 per flying hour for
certain aircraft types (Robbert 2013). By carefully planning its airlift missions, USTRANSCOM
could potentially ensure that all requirements are delivered on time, while doing so with a more
efficient use of its aircraft – more precisely, using fewer aircraft and through shorter missions.

At the same time, planning efficient airlift missions is difficult. The primary reason for this is the
combinatorial nature of the problem: planners must decide which requirements will be picked up
and delivered by which aircraft, and in what sequence those aircraft will pick up and deliver those
requirements. This naturally leads to an extremely large number of possible schedules. A secondary
reason is that airlift missions are governed by a multitude of constraints: requirements must be
picked up and delivered within their defined time windows; the total weight of the requirements
being transported by each aircraft at any time cannot exceed the weight capacity of that aircraft;
and the schedule must respect aircraft crew rest constraints. At present, planners schedule each
requirement one at a time, and look for opportunities to combine some missions with others to
reduce transportation costs. However, this process is largely manual and ad hoc, and there is a need
for a decision support infrastructure to systematically design schedules that deliver requirements
with minimal delay and with maximum utilization of the available aircraft.

In this paper, we present a methodology for designing airlift schedules for USTRANSCOM based
on modern, large-scale optimization. This method is based on solving a large-scale mixed-integer
programming (MIP) model of the problem using a combination of heuristics – an initialization
heuristic and a local search heuristic – and column/constraint generation. This method is capable
of efficiently producing high-quality schedules – that is, ones that deliver requirements on time or
with minimal delay, with a minimal amount of aircraft hours.

We make the following contributions:
1. We propose an MIP formulation of the airlift planning problem. This formulation jointly

decides the assignment of requirements to aircraft and the sequence of pickups and dropoffs so as
to minimize a weighted combination of delay and uptime (the total aircraft-hours required by the
schedule). Our formulation has a number of features not typically found in prior models for pickup
and delivery problems, such as the ability of aircraft to rest, constraints on rest periods and active
times, and time windows that are both hard and soft; we show how to model these various features
using the language of MIP.

2. Motivated by the difficulty of the original MIP problem, we propose a reformulation of the
problem as a large-scale MIP, where the decision variables correspond to assigning a set of require-
ments and the sequencing of each aircraft’s mission is captured through the objective function
coefficients. This reformulation allows us to decouple the decision of which requirements will be
assigned to which aircraft from the decision of how to sequence the pickup and dropoff events of
each aircraft. We propose a three-phase method for solving this reformulated problem: in the first
phase, we run an initialization heuristic that constructs an initial feasible assignment of require-
ments to aircraft; in the second phase, we improve this assignment using a local search heuristic;
and in the final phase, we use column generation to further improve the solution and to also obtain
a lower bound on the quality of the ultimate solution. Unlike most prior approaches to pickup and
delivery problems, our three-phase method makes use of a smaller version of our original MIP prob-
lem for sequencing each aircraft; this is advantageous, because each aircraft is sequenced optimally,
but also necessary in order to respect the operational constraints required by USTRANSCOM.

3. We demonstrate the value of this method through computational experiments with both a
simulated data set and a planning data set provided to us by USTRANSCOM. Using our two
heuristics, we are able to obtain high quality solutions for large instances (100 aircraft and 100
requirements) within six hours; the column generation algorithm we propose further improves
these solutions and provides an approximation of the suboptimality gap, which is below 1.5% on
average for the simulated data instances, and 7% on average for the USTRANSCOM planning

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 3

instances. More importantly, the solutions produced by our method significantly outperform a
baseline approach that emulates current practice at USTRANSCOM; in comparison, our overall
method leads to average reductions in total delay and uptime of 8 to 12% in the simulated data
instances and 16 to 40% in USTRANSCOM’s internal planning instances.

The rest of the paper is organized as follows. In Section 2, we present a survey of related work.
In Section 3, we define the problem and provide an initial MIP formulation of the problem. In
Section 4, we present a large-scale optimization approach for efficiently solving the problem defined
in Section 3. We present the results of our computational study in Section 5. Finally, in Section 6,
we conclude.

2. Literature review
We divide our review of the literature in two parts. We first survey the large body of work on
vehicle routing problems, which are closely related to the airlift planning problem. We then survey
related work in other areas, specifically in air traffic management and dynamic resource allocation.

Vehicle routing. The airlift planning problem falls in the general category of pickup and delivery
problems with time windows (PDPTW). The PDPTW is a generalization of the vehicle routing
problem, and consequently is also an NP-hard problem (Garey and Johnson 1979). The vehicle
routing problem involves designing a set of routes, originating and terminating at a single depot,
for a fleet of vehicles that service a set of customers with known demands, with each customer
being serviced exactly once. For a general survey of vehicle routing problems, we direct the reader
to Laporte (2007) and Toth and Vigo (2014).

PDPTW involves designing a set of minimum-cost routes to satisfy transportation requests
(requirements). Each requirement has a pickup and dropoff location, and a corresponding size.
The decision maker has a fleet of vehicles, each with some capacity and predefined start and end
locations. Each requirement has to be transported by one vehicle from its pickup location (origin)
to its dropoff location (destination). The routes must satisfy the precedence relations of pickup and
delivery points, along with the time windows imposed by them. For a comprehensive review of the
PDPTW literature, we refer the reader to Desrochers et al. (1988), Savelsbergh and Sol (1995),
Cordeau et al. (2004) and Toth and Vigo (2014, Chap. 6 and 7). In the PDPTW, all vehicles depart
from and return to a central depot. The airlift planning problem is best described as a PDPTW
with multiple depots, along with other real life constraints/features such as maximum active time
(the aircraft cannot operate beyond a certain amount of time without initiating a rest period)
and minimum rest time (when the aircraft rests, it must rest for at least some minimum number
of hours). In addition, the time constraints in our problem have both a “hard” component (each
requirement must be picked up/dropped off within some time window) and a “soft” component (if a
requirement is picked up/dropped off past a certain time within that time window, it is considered
late, and the objective penalizes this lateness).

Many heuristics have been proposed for the PDPTW problem, such as tabu search (Nanry
and Barnes 2000), simulated annealing (Bent and Van Hentenryck 2006) and large neighborhood
search (Ropke and Pisinger 2006). Within this body of work, there exist some approaches that
are similar to our initialization and local search heuristics (Algorithms 3 and 4 in Section 4.4
respectively). For example, in Nanry and Barnes (2000), the initial feasible solution is produced
by an insertion algorithm that attempts to insert a pickup-delivery pair onto the first vehicle
and if more than one feasible insertion point exists, then the procedure picks the insertion that
least increases the partial solution’s travel time; if no feasible insertion point exists, then a new
vehicle is added to the solution. This procedure resembles our initialization heuristic, which also
builds a partial assignment of requirements to aircraft and seeks to assign a requirement in a
way that least increases the total objective of the partial solution, while maintaining feasibility.
Nanry and Barnes (2000) also discuss a type of neighborhood used in their tabu search which
involves removing a pickup-delivery pair from its current vehicle route and inserting it into one of

Bertsimas et al.: The Airlift Planning Problem
4 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

the other vehicle routes; this procedure resembles our local search heuristic, which also involves
moving one requirement from its current aircraft and assigning it to a different aircraft. One major
difference between the heuristics we consider from those considered before is that in most previously
considered heuristics, the insertion of a pickup-delivery pair into a vehicle route leaves the order of
the other pickup-delivery pairs intact; stated differently, one does not re-optimize the sequence of
pickup-delivery pairs after each insertion. In contrast, our heuristics (Algorithm 3 and 4) involve
exactly re-optimizing each aircraft’s sequence whenever the set of requirements assigned to that
aircraft is changed (when a requirement is added to the aircraft, or a requirement is removed
from the aircraft). This is advantageous because it does not leave value on the table, so to speak,
with regard to the sequence of each aircraft; each aircraft’s sequence achieves the lowest possible
objective value. From an implementation point of view, inserting a pickup and a dropoff into an
existing event sequence in the airlift planning problem is also not straightforward to do due to the
constraints on weight and active time, and also due to the fact that aircraft may choose to rest for
a variable time period between events.

Outside of heuristic methods, a number of previous studies have considered the use of column
generation methods and branch-and-price methods for solving the PDPTW exactly. Column gen-
eration was first applied to PDPTW by Dumas, Desrosiers, and Soumis (1991); they formulated
the problem as a set partitioning problem, where each column maps to a feasible vehicle route and
each constraint corresponds to a request that must be satisfied exactly once, and they solved the
pricing subproblem using dynamic programming and label elimination methods. Savelsbergh and
Sol (1998) later proposed a branch-and-price method for solving the problem, where the pricing
subproblem is solved using a combination of construction and improvement heuristics. Ropke and
Cordeau (2009) propose a branch-cut-price approach. In their approach, the pricing subproblem is
formulated as a constrained shortest path problem; when it needs to be solved exactly, it is solved
using labeling algorithms, and otherwise it is solved using a combination of large neighborhood
search, label heuristics and heuristics based on construction and improvement. Other examples of
column generation approaches for PDPTW include Xu et al. (2003) and Sigurd, Pisinger, and Sig
(2004).

The column generation approach that we consider in this paper is similar to these previously
proposed approaches; the master problem that we solve is effectively a set partitioning problem,
where the variables correspond to whether an aircraft a is assigned to a set of requirements S
and we must iteratively add (a,S) pairs using column generation. However, our approach differs in
several ways. First, we use column generation for the purpose of improving the solution obtained by
our heuristics and for obtaining a lower bound on the quality of that solution; we do not embed our
column generation within a branch-and-price scheme in order to solve the problem exactly. Second,
like some prior applications of column generation to PDPTW, we also use a heuristic approach for
solving the pricing subproblem, but our approach differs in that it is a set-based local search. More
precisely, we perform a local search over sets of requirements S that lead to the lowest reduced cost,
where for each set S we solve a single-aircraft sequencing problem in order to compute the reduced
cost (cf. our comparison of our heuristic algorithms); in other words, our subproblem heuristic
exactly re-optimizes the actual sequence of pickups and dropoffs for each set of requirements (i.e.,
the heuristic does not additionally involve a local search over the sequence of pickups and dropoffs).
We are not aware of a similar approach in the vehicle routing literature. Outside of the vehicle
routing literature, a similar algorithm was proposed in the operations management literature, in
the context of finding an assortment (set of products) that maximizes a black-box revenue function
and was shown to perform well for a variety of revenue functions (Jagabathula 2014).

Some papers have also considered mixed-integer programming approaches not based on set
partitioning and column generation. Ropke, Cordeau, and Laporte (2007) consider a branch-and-
cut approach for solving a “two-index” formulation of the PDPTW, where the binary decision
variables indicate whether a given pickup/delivery is performed immediately before a different
pickup/delivery. Lu and Dessouky (2004) solve the multiple vehicle pickup and delivery problem

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 5

using branch-and-cut. Mahmoudi and Zhou (2016) consider the PDPTW with many vehicles and
propose a multi-commodity flow formulation of it using a state-space-time network representa-
tion; they consider a Lagrangian relaxation of the multi-commodity flow problem, which leads
to a collection of single vehicle routing subproblems that can be solved using a forward dynamic
programming algorithm.

Some work in PDPTW has focused on air transportation. One recent example is the paper of
Carnes et al. (2013), which considers the assignment and sequencing of aircraft for performing non-
emergency transportation of patients between different facilities. The problem has some similarities
to the one that we consider. For example, each patient is analogous to a requirement in our context,
and each aircraft is limited in how many requests (requirements/patients) that it can carry at
any time. However, some constraints are different and do not have analogs in our problem – for
example, a schedule in Carnes et al. (2013) cannot transport infectious patients with uninfected
patients, and must spend additional time on the ground after delivering an infectious patient to
be disinfected. Similarly, there is no constraint in Carnes et al. (2013) analogous to our rest and
maximum active time constraints. In addition, the solution methods are different. In Carnes et al.
(2013), the problem is solved through a set partitioning formulation, but because of the scale of
their problem and constraints on how many requests can be assigned to each aircraft, the columns
of the formulation can be completely enumerated and their costs precomputed, which allows them
to solve the problem directly to full optimality. In contrast, this is not possible in our setting,
because of the scale and the lack of a similar constraint on how many requirements can be assigned
to a single aircraft; as a result, we must turn to both column generation and initialization/local
search heuristics.

We summarize the key differences between our paper and the existing PDPTW literature as
follows:

1. Problem setting. Our problem contains many elements not typically found in PDPTW
problems, such as hard and soft time windows, variable wait times, constraints on maximum active
time, and combined delay and uptime as an objective. To the best of our knowledge, no other paper
has studied a PDPTW problem with this specific combination of features, at the scale required by
USTRANSCOM.

2. Heuristics. Both our initialization and local search heuristics involve modifying an assign-
ment of requirements to aircraft, where the value of an assignment is obtained by solving a small,
single aircraft MIP problem for each aircraft to sequence the pickups and dropoffs; in this way, the
single aircraft MIP problem is used as a black box. This contrasts with many other construction
and local search heuristics for PDPTW that do not use MIP, but directly remove pickup/dropoff
events from one vehicle’s sequence and insert them into the sequence of a different vehicle. Our use
of the single aircraft MIP is necessary for our problem setting because, as mentioned earlier, it is
not straightforward to insert events into a sequence in a way that respects the various constraints
of the problem.

3. Column generation. Our column generation approach differs in two ways from existing
column generation approaches. First, our master problem is not a pure set partitioning problem,
as is often the case in many PDPTW problems, but also involves an assignment decision; this
difference is important because the aircraft are heterogeneous in their travel times, capacities
and the ports at which they must start and end their missions. Second, the subproblem in our
column generation algorithm is solved heuristically, again using the aforementioned single aircraft
MIP problem as a black box. As with our initialization and local search heuristics, the use of the
single aircraft MIP problem is a practical necessity in order to ensure feasibility with respect to
all of the constraints of the problem; the features of our problem complicate the use of traditional
methods such as dynamic programming. Third, we use column generation in a heuristic manner,
to improve the solution obtained from our local search heuristic, as opposed to using it within
a branch-and-price method. As such, our column generation method can be implemented with
less effort and requires less time to run than branch-and-price. However, unlike branch-and-price,

Bertsimas et al.: The Airlift Planning Problem
6 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

the final integer solution produced by our column generation algorithm is not guaranteed to be
optimal.

Other areas. Outside of vehicle routing, the present paper is related to some other work in air
traffic management and dynamic resource allocation.

The air traffic flow management (ATFM) problem is to decide what flow management actions to
take for a set of flights – such as ground holding, airborne holding and rerouting – so as to minimize
the aggregate delay of those flights, while respecting constraints on the capacity of each sector of
airspace. We focus on some specific examples of work in this area; for a more detailed review of
this literature, the reader is referred to Vossen, Hoffman, and Mukherjee (2012). Bertsimas and
Stock Patterson (1998) propose an integer programming formulation of the problem where the
only allowed interventions are ground holding and speed control, and each aircraft’s path is fixed.
Bertsimas and Stock Patterson (2000) extended this approach to allow for re-routing decisions by
considering a dynamic, multi-commodity flow problem, which they solve using a combination of
Lagrangian relaxation, randomized rounding and solving an integer packing problem. Bertsimas,
Lulli, and Odoni (2011) build on both of these previous papers by proposing an integer program-
ming model that allows for the full range of flow management actions and that can be solved directly
using commercial software for very large-scale instances (for example, the continental United States
network).

There are similarities and differences between the airlift planning problem and the ATFM prob-
lem studied in the above papers. Our problem bears some resemblance to the ATFM problem in
that routing decisions are somewhat similar to the scheduling decisions (what sequence should
an aircraft perform its assigned pickups and dropoffs) in the airlift planning problem; unlike the
ATFM problem, though, the airlift planning problem additionally involves an assignment decision,
which the ATFM problem does not. Another point of difference has to do with whether the air-
craft are coupled or not. Although one can consider constraints that couple aircraft together in
our problem (such as so-called “maximum-on-ground” constraints, which limit how many aircraft
can be present at an airbase at any moment in time), we do not consider such constraints in this
paper, and so the aircraft in our model are decoupled. In contrast, the sector capacity constraints
in the ATFM problem (i.e., there can be no more than five aircraft in a sector) effectively cou-
ple the aircraft together, and one cannot plan the flight path/flow management decisions for one
aircraft independently of another. From a modeling perspective, our approach for the airlift plan-
ning problem involves an integer programming model where the time of each pickup/dropoff is
represented through continuous variables, and the sequence of events is represented through slot-
based variables (i.e., event e is the pth event in aircraft a’s event sequence). In contrast, time is
discretized in Bertsimas and Stock Patterson (1998, 2000) and Bertsimas, Lulli, and Odoni (2011),
and the sequence is represented through “by” variables (i.e., flight f reaches sector j by time t).
Furthermore, from a solution perspective, our approach decouples the assignment and schedul-
ing decisions and solves the problem using heuristics and column generation; in Bertsimas and
Stock Patterson (1998, 2000) and Bertsimas, Lulli, and Odoni (2011), one directly solves the full
integer programming formulation of the problem.

Beyond the ATFM problem, our work is related to the more general problem of dynamic resource
allocation, where one must allocate requests to resources so as to complete them within some
predefined time windows with minimum cost. One salient example in this area is Bertsimas, Gupta,
and Lulli (2014), who propose a general integer programming formulation for dynamic resource
allocation and a specialized algorithm for solving it based on adjustable time windows, with the
ATFM problem as an application of the framework. The formulation in Bertsimas, Gupta, and
Lulli (2014) is similar to those in Bertsimas and Stock Patterson (1998, 2000) and Bertsimas, Lulli,
and Odoni (2011), in that the main decision variables model whether a request has begun utilizing
a resource by some discrete time; as mentioned in the discussion above, this formulation differs
significantly from our slot-based formulation.

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 7

3. Problem definition
In this section, we define the airlift planning problem. We begin by describing the notation for the
parameters and decision variables in Section 3.1. Then, in Section 3.2, we provide a mixed-integer
programming (MIP) formulation of the problem, and describe in detail the objective function and
the constraints of the formulation.

3.1. Notation
We assume that there are R requirements that must be transported, indexed from 1 to R, and we
let R= {1, . . . ,R} denote the set of requirements. We assume that there are A aircraft that can
be used to transport the requirements, indexed from 1 to A and let A= {1, . . . ,A} denote the set
of aircraft. We will model the problem by defining four primitive events that may occur over the
planning horizon:

1. Pickup(r): requirement r is picked up.
2. Dropoff(r): requirement r is dropped off.
3. Start(a): aircraft a begins its mission.
4. End(a): aircraft a ends its mission.

We use E to denote the set of all possible events:

E = {Pickup(r) r ∈R}∪{Dropoff(r) r ∈R}∪{Start(a) a∈A}∪{End(a) a∈A}.

Each event may only be performed by one aircraft. All Pickup(r) and Dropoff(r) events must
be executed, and may be executed by any aircraft. We assume that the same aircraft used to
execute Pickup(r) must also be used to execute Dropoff(r). The Start(a) and End(a) events must
be executed by aircraft a if and only if aircraft a is used in the schedule.

Each event e must occur at a specific location or “port”. We let τe,e′,a denote the travel time
of aircraft a from the port of event e to the port of event e′. We let `e denote the earliest time
by which event e may be executed, ue denote the latest time by which event e may be executed
without penalty, and Be denote the maximum slack of event e, that is, Be is the largest amount of
time by which event e may be executed past ue. Stated differently, an event may be executed at any
time t within [`e, ue +Be]; if t is within [`e, ue], there is no penalty, but if t is within (ue, ue +Be],
the requirement is deemed late, where the delay/slack is given by t− ue. The event e cannot be
executed past ue +Be or before `e.

We use T to denote the end of the time horizon, which is the maximum of all of the times by
which any event may be executed; mathematically, it is defined as

T = max
e∈E

(ue +Be).

Similarly, we assume that the problem starts at time 0; the interval [0, T] thus defines the planning
horizon of the problem.

We let we denote the change in an aircraft’s weight associated with executing event e. For Start(a)
and End(a) events, we = 0; for Pickup(r) events, wPickup(r) > 0 (performing a pickup leads to an
increase in the carried weight of the aircraft), and for Dropoff(r) events, wDropoff(r) =−wPickup(r) < 0
(performing a dropoff leads to a decrease in the carried weight of the aircraft). For each aircraft
a ∈ A, we use Wa to denote the weight capacity of that aircraft; at any point in time, the total
weight carried by aircraft a cannot exceed Wa. We assume that for each requirement r, the weight
of that requirement fits within the capacity of at least one of the aircraft (i.e., for each r, there
exists an a∈A such that wPickup(r) ≤Wa).

Each aircraft is subject to rest constraints. We let γa denote the maximum active time of aircraft
a, where the active time is defined as the accumulated time that the aircraft has been in the air
since its last rest period. We let δa denote the minimum rest time of aircraft a; this is the least
amount of time that an aircraft must rest on the ground before it can return to flying and executing
its remaining events.

Bertsimas et al.: The Airlift Planning Problem
8 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

The objective that we will optimize consists of a weighted combination of the total delay/slack
of all events plus the total uptime of all aircraft used in the schedule, where the uptime of aircraft
a is defined as the time from the Start(a) event to the End(a) event of aircraft a. We use πe to
denote the priority of event e; the priority of an event is the weight coefficient of that event in
the objective. We use C to denote the objective weight coefficient of the total uptime of all of the
aircraft; we assume that C > 0.

3.2. Formulation
In this section, we define the airlift planning problem by formulating it as a mixed-integer pro-
gramming (MIP) problem.

We begin by modeling each aircraft as having a sequence of P slots. Each slot fits at most one
event. Since any one aircraft can perform at most 2R+ 2 events – the Pickup(r) and Dropoff(r)
event for each requirement in R, as well as the Start(a) and End(a) events of that aircraft – we set
the number of slots P to be 2R+ 2. In addition, for the purpose of defining the MIP formulation,
let us also define E(R) to be the set of pickup and dropoff events for all requirements:

E(R) = {Pickup(r) r ∈R}∪{Dropoff(r) r ∈R}.

Additionally, let us define E(a,R) as the set of pickup and dropoff events for all requirements in
R, together with the start and end events for aircraft a, formally,

E(a,R) = {Pickup(r) r ∈R}∪{Dropoff(r) r ∈R}∪{Start(a),End(a)}.

We define our decision variables as follows. We let xe,a,p be a binary variable that is 1 if aircraft
a executes event e in its pth slot, and 0 otherwise. We let ye,e′,a,p be a binary variable that is 1 if
aircraft a executes event e in slot p of its sequence and event e′ in slot p+ 1 of its sequence, and 0
otherwise. We let za,p be a binary variable that is 1 if aircraft a rests immediately after executing
the event in slot p. We let ta,p be a continuous variable that represents the time at which aircraft a
executes the event in slot p. We let se,a,p be a continuous variable that represents the delay/slack
of event e if it is performed by aircraft a in slot p of that aircraft’s sequence. Finally, we use ωa,p

to denote the accumulated active time from aircraft a’s Start(a) event to immediately before the
event in slot p of aircraft a’s sequence.

minimize
x,y,z,t,s,ω

∑
e∈E

πe

∑
a∈A

P∑
p=1

se,a,p +C
∑
a∈A

(ta,P − ta,1) (1a)

subject to
∑
a∈A

P∑
p=1

xe,a,p = 1, ∀ e∈ E(R), (1b)

P∑
p=1

xStart(a),a,p ≤ 1, ∀ a∈A, (1c)

P∑
p=1

xEnd(a),a,p = xStart(a),a,1, ∀ a∈A, (1d)∑
e∈E(a,R)

xe,a,p ≤ xStart(a),a,1, ∀ a∈A, p∈ {1, . . . , P}, (1e)∑
e∈E(a,R)

xe,a,p′ ≤ 1−xEnd(a),a,p, ∀ a∈A, p∈ {2, . . . , P − 1}, p′ ∈ {p+ 1, . . . , P}, (1f)∑
e∈E(a,R)

xe,a,p+1 ≤
∑

e∈E(a,R)

xe,a,p, ∀ a∈A, p∈ {1, . . . , P − 1}, (1g)

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 9

P∑
p=1

xDropoff(r),a,p =
P∑

p=1

xPickup(r),a,p, ∀ r ∈R, a∈A, (1h)

p∑
p′=1

xPickup(r),a,p′ ≥
p∑

p′=1

xDropoff(r),a,p′ ,

∀ r ∈R, a∈A, p∈ {1, . . . , P}, (1i)

ye,e′,a,p ≥ xe,a,p +xe′,a,p+1− 1,

∀ a∈A, e, e′ ∈ E(a,R), p∈ {1, . . . , P − 1}, (1j)

ye,e′,a,p ≤ xe,a,p, ∀ a∈A, e, e′ ∈ E(a,R), p∈ {1, . . . , P − 1}, (1k)

ye,e′,a,p ≤ xe′,a,p+1, ∀ a∈A, e, e′ ∈ E(a,R), p∈ {1, . . . , P − 1}, (1l)∑
e∈E(a,R)

p∑
p′=1

wexe,a,p′ ≤Wa, ∀ a∈A, e∈ E(a,R), p∈ {1, . . . , P}, (1m)

ta,p+1 ≥ ta,p +
∑

e,e′∈E(a,R)

τe,e′,aye,e′,a + δaza,p,

∀ a∈A, p∈ {1, . . . , P − 1}, (1n)

ta,p ≥
∑

e∈E(a,R)

`exe,a,p, ∀ a∈A, p∈ {1, . . . , P}, (1o)

ta,p ≤
∑

e∈E(a,R)

(uexe,a,p + se,a,p) +T

1−
∑

e∈E(a,R)

xe,a,p

 ,

∀ a∈A, p∈ {1, . . . , P}, (1p)

se,a,p ≤Be ·xe,a,p, ∀ a∈A, e∈ E(a,R), p∈ {1, . . . , P}, (1q)

ωa,1 = 0, ∀ a∈A, (1r)

ωa,p = ωa,p−1 +
∑

e,e′∈E(a,R)

τe,e′,a · ye,e′,a,p−1, ∀ a∈A, p∈ {2, . . . , P}, (1s)

ωa,q′ −ωa,q ≤ γa ·

1 +

q′−1∑
p=q

za,p

 ,

∀ a∈A, q ∈ {1, . . . , P − 1}, q′ ∈ {q+ 1, . . . , P}, (1t)

xe,a,p ∈ {0,1}, ∀ a∈A, e∈ E(a,R), p∈ {1, . . . , P}, (1u)

za,p ∈ {0,1}, ∀ a∈A, p∈ {1, . . . , P}, (1v)

ye,e′,a,p ≥ 0, ∀ e, e′ ∈ E(a,R), a∈A, p∈ {1, . . . , P − 1}, (1w)

ta,p, ωa,p ≥ 0, ∀ a∈A, p∈ {1, . . . , P}, (1x)

se,a,p ≥ 0, ∀ e∈ E(a,R), a∈A, p∈ {1, . . . , P}. (1y)

To understand the formulation, let us first describe each relevant group of constraints, followed
by the objective function.

Mission constraints: Constraint (1b) requires that each pickup and dropoff event happens; each
such event must be assigned to the slot of some aircraft. Constraint (1c) ensures that the Start(a)
event of each aircraft a is executed at most once by aircraft a. Constraint (1d) ensures that aircraft
a executes the End(a) event if and only if it executes the Start(a) event in slot 1. Constraint (1e)
ensures that in each slot of each aircraft, there can be at most one event if the aircraft executes
Start(a) in slot 1, and there is no event if that aircraft does not start in slot 1. Constraints (1e)

Bertsimas et al.: The Airlift Planning Problem
10 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

and (1c) together ensure that an aircraft performs any events if and only if it executes Start(a) in
slot 1; in other words, Start(a) is always the event of the first slot of aircraft a if aircraft a is to
be used in the solution. Constraint (1f) ensures that there are no events in the slots of aircraft a
after the End(a) event (if the aircraft ends its mission, it cannot continue performing pickups and
dropoffs). Constraint (1g) requires that if there is an event in slot p+ 1, there must be an event
in slot p; stated differently, there cannot be any empty slots between Start(a) and End(a).

Pickup/dropoff constraints: Constraint (1h) ensures that a requirement must be picked up
and dropped off by the same aircraft. Constraint (1i) ensures that, in terms of slots, Pickup(r)
always comes before Dropoff(r). (The left hand side of the constraint is 1 if Pickup(r) happens
by slot p and 0 otherwise, and the right hand side is 1 if Dropoff(r) happens by slot p and 0
otherwise; the constraint requires that if a requirement is dropped off by slot p, it must have been
picked up by slot p as well.)

Transition constraints: Constraints (1j) through (1l) are forcing constraints that ensure that
the y variables take their correct values based on the x variables.

Capacity constraint: Constraint (1m) requires that the weight carried by aircraft a at any slot
p cannot exceed the capacity Wa of that aircraft.

Travel time dynamics constraint: Constraint (1n) ensures that the ta,p variables respect travel
times. More precisely, this constraint requires that the event in slot p + 1 of aircraft a can be
performed no earlier than the time of slot p of aircraft a plus the correct travel time (encoded
by the weighted sum of ye,e′,a,p variables) and the minimum rest time δa if the aircraft rests after
performing the event of slot p.

Time window constraints: Constraint (1o) ensures that the time at which aircraft a performs
whatever event is in slot p satisfies the earliest allowable time `e of that event. Constraint (1p)
ensures that the time at which aircraft a performs the event in slot p satisfies the latest allowable
time ue, adjusted by the slack/delay se,a,p of that event. In the case that there is no event assigned
to slot p of aircraft a, these constraints become vacuous; the right-hand side of constraint (1o)
becomes 0, while the right-hand side of constraint (1p) becomes T . Constraint (1q) requires that
the slack/delay variable se,a,p is bounded by Be if event e happens in slot p of aircraft a and is
forced to zero otherwise.

Active time constraints: Constraints (1r) and (1s) model the dynamics of the accumulated
active time from the start of the aircraft’s mission. Constraint (1t) ensures that the active time
accumulated between any two periods does not exceed how much active time is afforded by the
rests taken over those two periods.

Variable definitions: Finally, constraints (1u) through (1y) define the variables. Note that since
the x variables are binary, the forcing constraints (1j) through (1l) ensure that the y variables
are automatically forced to their correct binary values; thus, we can model the y variables as
continuous variables.

Objective function: The objective (1a) consists of two parts: the first part represents the priority-
weighted sum of slacks/delays, while the second part represents the weighted total uptime of all of
the aircraft.

Note that since C > 0, ta,P − ta,1 will always correctly reflect the uptime of aircraft a. If aircraft
a is not used, all y variables corresponding to aircraft a will be zero, and ta,1, . . . , ta,P are free to
take any values in [0, T], so long as they form an increasing sequence of values; due to the positive

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 11

weight C, we will have at optimality that ta,1 = · · · = ta,P , so that ta,P − ta,1 will thus be zero.
In the case that aircraft a is used, let p′ be the slot at which End(a) occurs; then, for every slot
p≥ p′, all of the y variables corresponding to those slots are zero, and the variables ta,p′+1, . . . ta,P
are free to take any value between ta,p′ and T . Since C is positive, we will have at optimality that
ta,p′ = ta,p′+1 = · · ·= ta,P ; moreover, if aircraft a is used, then the event in slot 1 must be Start(a).
Thus, ta,P − ta,1 again correctly captures the uptime.

We remark that problem (1) above is formulated in terms of slots. One may wonder if the
problem can be formulated more compactly, by using a formulation that models whether event i
precedes event j (see, for example, Desrochers et al. 1988, p. 69). In order to model event times
correctly in such a framework, one must use big-M constraints, which generally leads to weaker
MIP formulations. Furthermore, our experimentation with this type of modeling approach in both
the full aircraft problem as well as the single aircraft problem (problem (1) restricted to a single
aircraft; see problem (2) in Section 4.1) did not yield an appreciable change in solution times.

4. Method
As stated in Section 3, the formulation of the problem (problem (1)) in Section 3 is for the purpose
of clearly defining the problem, as opposed to providing a path towards solving the problem. It
turns out that problem (1) is too difficult to solve directly as a MIP; as we will see in Section 5.2,
for small problems (A = R = 10), the problem can take as much as two hours to solve, and for
slightly larger problems (A = R = 20), even the relaxation cannot be solved within a reasonable
time frame.

Due to the difficulty of solving problem (1), we now focus our attention on an alternate approach
for attacking the problem. This alternate approach is motivated by the fact that the problem
consists of two coupled problems: we first must assign the requirements to the aircraft, and then we
must sequence the events that each aircraft must perform. Solving both problems simultaneously
within one formulation is very difficult, as acknowledged above. However, if one fixes an assignment
of requirements to the aircraft, then the optimization problem simplifies considerably, for two
reasons; each aircraft can be scheduled independently, leading to A independent optimization
problems, and each optimization problem is a simpler one than the overall problem, since one
major dimension of the problem – the assignment of requirements to aircraft – is eliminated.

In this section, we begin in Section 4.1 by describing a formulation for the single aircraft problem,
where the set of requirements assigned to one aircraft is fixed, and one only has to sequence the
events for that aircraft. Having defined the single aircraft problem, in Section 4.2 we describe an
alternate, large-scale MIP reformulation of the full problem (1) from Section 3 that takes advantage
of the coupled nature of the problem described above and the single aircraft problem defined in
Section 4.1. We then develop in Section 4.3 a column generation approach for provably solving
the LP relaxation of this problem. In Section 4.4, we additionally develop two heuristics – an
initialization heuristic for finding an initial solution that is feasible and a local search heuristic for
improving this initial solution – that can be used to warm start the column generation approach.
Finally, in Section 4.5, we summarize the overall algorithmic approach.

4.1. Continuous-time MIP for single aircraft scheduling
We begin by describing our large-scale approach by defining the so-called single aircraft schedul-
ing problem, which is the foundation for our overall algorithmic approach. In the single aircraft
scheduling problem, a set of requirements is assigned to one aircraft, and we wish to schedule the
pickup and dropoff events for that aircraft in a way that minimizes the objective from problem (1)
(the weighted combination of delay and uptime) restricted to that one aircraft.

Let a be the aircraft of interest, and let S ⊆ R be the set of requirements that is to be
scheduled. We define the notation for this problem below, which is similar to the notation of the
full problem (1), except without the need for the aircraft indices in the variables and constraints

Bertsimas et al.: The Airlift Planning Problem
12 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

since there is only a single aircraft involved.

Parameters. In addition to those parameters defined earlier in Section 3.1, we define some addi-
tional parameters. We let E(a,S) denote the set of events that must be performed by aircraft a
when it is assigned the set of requirements S; formally, it is defined as:

E(a,S) = {Start(a),End(a)}∪ {Pickup(r) : r ∈ S}∪ {Dropoff(r) : r ∈ S}.

Similarly to Section 3.2, we let P denote the number of slots in the formulation, which is the size
of E(a,S); this is then simply P = 2|S|+ 2.

Variables. The decision variables are defined as follows. For each event e ∈ E(a,S) and slot p ∈
{1, . . . , P} we let xe,p be a binary decision variable that is 1 if event e is performed in slot p, and 0
otherwise; we also let xby

e,p be a binary decision variable that is 1 if event e is performed by slot p.
For each e and p ∈ {1, . . . , P − 1}, we let ye,e′,p be a binary decision variable that is 1 if event e is
performed in slot p, and event e′ is performed in slot p+ 1. For each slot p, we let zp be a binary
decision variable that is 1 if the aircraft rests after performing the event of slot p, and 0 otherwise.
We let tp be the time at which the aircraft starts to execute the event in slot p. We let se,p denote
the slack of event e if it is assigned to slot p. Finally, we let ωp denote the accumulated active time
of the aircraft at the start of slot p from the beginning of the aircraft’s mission.

With these definitions, we now define the single aircraft scheduling problem.

minimize
x,y,z,t,s,ω

∑
e∈E(a,S)

P∑
p=1

πese,p +C(tP − t1) (2a)

subject to
P∑

p=1

xe,p = 1, ∀ e∈ E(a,S), (2b)∑
e∈E(a,S)

xe,p = 1, ∀ p∈ {1, . . . , P}, (2c)

xStart(a),1 = 1, (2d)

xEnd(a),P = 1, (2e)

xe,1 = xby
e,1, ∀ e∈ E(a,S), (2f)

xe,p = xby
e,p−x

by
e,p−1, ∀ e∈ E(a,S), p∈ {2, . . . , P}, (2g)

xby
e,p−1 ≤ xby

e,p, ∀ p∈ {2, . . . , P}, (2h)

xby
Dropoff(r),p ≤ x

by
Pickup(r),p, ∀ r ∈ S, p∈ {1, . . . , P}, (2i)∑

e′∈E(a,S)

ye,e′,p = xe,p, ∀ e∈ E(a,S), p∈ {1, . . . , P − 1}, (2j)∑
e′∈E(a,S)

ye′,e,p−1 = xe,p, ∀ e∈ E(a,S), p∈ {2, . . . , P}, (2k)∑
e∈E(a,S)

wex
by
e,p ≤Wa, ∀ p∈ {1, . . . , P}, (2l)

tp ≥ tp−1 +
∑

e,e′∈E(a,S)

τe,e′,a · ye,e′,p−1 + δazp−1, ∀ p∈ {2, . . . , P}, (2m)

tp ≥
∑

e∈E(a,S)

`exe,p, ∀ p∈ {1, . . . , P}, (2n)

tp ≤
∑

e∈E(a,S)

uexe,p +
∑

e∈E(a,S)

se,p, ∀ p∈ {1, . . . , P}, (2o)

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 13

se,p ≤Be ·xe,p, ∀ e∈ E(a,S), p∈ {1, . . . , P}, (2p)

ω1 = 0, (2q)

ωp = ωp−1 +
∑

e,e′∈E(a,S)

τe,e′,a · ye′,e,p−1, ∀ p∈ {2, . . . , P}, (2r)

ωq′ −ωq ≤ γa ·

1 +

q′−1∑
p=q

zp

 , ∀ q ∈ {1, . . . , P − 1}, q′ ∈ {q, . . . ,P}, (2s)

xby
e,p ∈ {0,1}, ∀ e∈ E(a,S), p∈ {1, . . . , P}, (2t)

xe,p ≥ 0, ∀ e∈ E(a,S), p∈ {1, . . . , P}, (2u)

ye,e′,p ≥ 0, ∀ e, e′ ∈ E(a,S), p∈ {1, . . . , P}, (2v)

zp ∈ {0,1}, ∀ p∈ {1, . . . , P}, (2w)

se,p ≥ 0, ∀ e∈ E(a,S), p∈ {1, . . . , P}, (2x)

ωp ≥ 0, ∀ p∈ {1, . . . , P}. (2y)

Mission constraints: Constraint (2b) requires that each event in E(a,S) – all Pickup(r) and
Dropoff(r) events as well as Start(a) and End(a) – are assigned to a slot. Constraint (2c) requires
that each slot has exactly one event assigned to it. Constraints (2d) and (2e) ensure that Start(a)
and End(a) are in the first and last slots, respectively.

“By”-“at” linking constraints: Constraints (2f) and (2g) link the xby
e,p variable (“event e

happens by slot p) and the xe,p variables (“event e happens at slot p) together. Constraint (2h)
links the xby variables in consecutive periods; in words, if event e happens by slot p−1, then event
e happens by slot p.

Pickup/dropoff constraint: Constraint (2i) requires that, in terms of slots, the Pickup(r) event
comes before the Dropoff(r) event.

Transition constraints: Constraints (2j) and (2k) ensures that the y variables, which model
transitions from one event in one slot to another event in the next slot, are consistent with the
sequence of events as represented by the x variables.

Capacity constraint: Constraint (2l) ensures that the total weight carried in the aircraft at each
slot is no more than the capacity of the aircraft.

Travel time dynamics constraint: Constraint (2m) models the one-step dynamics of the time
of each event. In words, the time at which the event of slot p is started is at least the time of the
event in slot p− 1, plus the travel time from the event of slot p− 1 to the event of slot p and the
minimum rest period (if the aircraft rests after slot p− 1).

Time window constraints: Constraints (2n) and (2o) require that the time at which the
event in slot p is executed is within the time window of that event (no earlier than the earliest
allowable time, `e, and no later than the latest allowable time ue plus any slack captured in se,p).
Constraint (2p) requires that the slack variable se,p is at most Be if event e happens in slot p, and
is forced to zero otherwise.

Active time constraints: Constraint (2q) ensures that the accumulated active time before the
first event (Start(a)) is exactly zero; constraint (2r) models the dynamics of how active time is
accumulated from one slot to the next. Constraint (2s) ensures that the active time accumulated

Bertsimas et al.: The Airlift Planning Problem
14 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

between any two periods does not exceed how much active time is afforded by the rests taken over
those two periods.

Variable definitions: Constraints (2t) through (2y) specify that the xby and z variables are
binary, while the x, y, s, t and ω variables are continuous. Note that although the x (“at” variables)
and y variables have a binary interpretation, they can be modeled as continuous variables since,
by virtue of the constraints, the x and y variables will be automatically forced to their correct
binary values whenever the xby variables are binary.

Objective function: The objective (2a) is identical to that in the continuous-time formulation,
only it is restricted to aircraft a; it is the priority-weighted sum of event slack times, plus the
weighted total time from the start of the mission to the end of the mission for the given aircraft.

For a given aircraft a and a given set of requirements S, we use f(a,S) to denote the optimal
objective value of problem (2) when it is feasible. In the case that problem (2) is infeasible, we
define f(a,S) = +∞.

Problem (2) bears strong resemblance to problem (1); compare, for example, constraint (2m) to
constraint (1n). Despite this resemblance, the two problems are different, with the key difference
being that problem (2) pertains to a single aircraft, where the set of requirements assigned to it is
known. As such, problem (2) is a considerably easier problem to solve than problem (1). Note also
that since the assigned set of requirements is known in problem (2), a number of constraints of a
more technical nature from problem (1) can be eliminated from problem (2) (for example, there is
no analog of constraint (1f) because we know that End(a) will be in the last slot).

In addition to this conceptual difference between the goals of problems (2) and (1), there is also
one other major difference between the two formulations, which has to do with the use of “by”
variables (the xby

e,p variables) in addition to “at” variables (the xe,p variables). The reason for this
choice is that it leads to more desirable branching behavior. More specifically, by branching on a
fractional xe,p variable, the up branch (xe,p = 1) contains a lot of information (event e happens in
slot p), but the down branch (xe,p = 0) does not (event e does not happen in slot p, so it could
occur in any of the other slots). In contrast, by branching on an xby

e,p variable, the solution space
is partitioned in a more balanced way; the up branch (xby

e,p = 1) tells us that event e happens in
a slot in {1, . . . , p}, whereas the down branch (xby

e,p = 0) tells us that event e happens in a slot
in {p+ 1, . . . , P}. The use of “by” variables has been considered in other scheduling applications
(see, e.g., Bertsimas and Stock Patterson 1998, 2000, Bertsimas, Lulli, and Odoni 2011) and more
generally in integer programming (Vielma 2015). Empirically, we have observed that the single
aircraft problem can be solved faster when formulated using “by” variables as opposed to just the
“at” variables. Unfortunately, our experimentation with using “by” variables within the full aircraft
formulation (1) did not lead to an appreciable improvement in the solvability of that formulation,
which is why problem (1) is formulated only in terms of the “at” variables.

4.2. Large-scale MIP formulation
In this section, we present a large-scale MIP formulation of the airlift planning problem. This
formulation is termed “large-scale” because in general, it contains an extremely large number of
variables, that scales exponentially with the number of requirements.

We begin by defining some additional notation. We let P(R) denote the power set of R, that
is, the collection of all subsets of R. We let V denote the set of pairs (a,S)∈A×P(R) for which
the single aircraft problem is feasible, i.e., f(a,S)<+∞. We use Pa(R) to denote the collection of
subsets of R for which the single aircraft problem with aircraft a is feasible, that is,

Pa(R) = {S ∈P(R) (a,S)∈ V }.

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 15

The only decision variable in this new formulation is xa,S, a binary decision variable that is 1 if
the set of requirements S is assigned to aircraft a, and 0 otherwise.

The large-scale MIP formulation of the airlift planning problem can now be defined as follows.

minimize
x

∑
(a,S)∈V

f(a,S) ·xa,S (3a)

subject to
∑

(a,S)∈V

I{r ∈ S} ·xa,S = 1, ∀ r ∈R, (3b)∑
(a,S)∈V

I{a= a′} ·xa,S = 1, ∀ a′ ∈A, (3c)

xa,S ∈ {0,1}, ∀(a,S)∈ V. (3d)

To understand the formulation, let us first consider the constraints. Constraint (3b) requires that
each requirement in the entire set of requirements R is assigned to one of the aircraft. Con-
straint (3c) requires that each aircraft is assigned to a set of requirements S; note that S could
be the empty set ∅. Constraint (3d) requires that the xa,S variables be binary. Taken together, the
constraints ensure that the xa,S variables represent a partitioning of the set of requirements R over
the available set of aircraft A. The objective (3a) represents the same objective as in problem (1),
only expressed using the f(a,S) parameters and the xa,S decision variables.

We note that the above problem is a set partitioning problem which, as mentioned in Section 2,
are often used to model vehicle routing problems. We note that our problem involves an assignment
decision (as in, e.g., Carnes et al. 2013), as opposed to being pure partitioning problem (as in, e.g.,
Dumas, Desrosiers, and Soumis 1991). This is necessary because the aircraft are not homogeneous.
In particular, the aircraft may be required to start and end their missions at different ports and
they may have different weight capacities and different nominal air speeds. Thus, assigning the
same set of requirements to two different aircraft can lead to significant differences in the quality
of the overall solution, which needs to be accounted for in the above formulation.

4.3. Column generation approach
Problem (3) is, like problem (1), still an extremely challenging problem to solve. There are three
reasons for this. First, although the problem has a tractable number of constraints (it contains
R+A linear constraints), the number of variables will in general be extremely large, as the variables
correspond to subsets of R. Second, the f(a,S) values that are used to define the optimization
problem are not available to us a priori; each such value must be obtained by solving an integer
programming problem (namely, problem (2)). Finally, the problem is still an integer programming
problem. However, the advantage of considering problem (3) is that it is amenable to column
generation methods.

In this section, we will consider a column generation approach for approximately solving prob-
lem (3). We begin by considering the linear programming (LP) relaxation of problem (3), which is
given below:

minimize
x

∑
(a,S)∈V

f(a,S) ·xa,S (4a)

subject to
∑

(a,S)∈V

I{r ∈ S} ·xa,S = 1, ∀ r ∈R, (4b)∑
(a,S)∈V

I{a= a′} ·xa,S = 1, ∀ a′ ∈A, (4c)

xa,S ≥ 0, ∀ (a,S)∈ V. (4d)

Bertsimas et al.: The Airlift Planning Problem
16 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

We will develop our column generation approach from a dual perspective. The dual of this relaxation
is given by

maximize
α,β

∑
r∈R

αr +
∑
a∈A

βa (5a)

subject to
∑
r∈S

αr +βa ≤ f(a,S), ∀ (a,S)∈ V. (5b)

Clearly, by solving problem (5), we also solve problem (4). To solve problem (5), let us assume that
rather than starting with all of the constraints enumerated over the set V , which is the set of all
possible (a,S) values, we instead assume that we start with a subset V̄ of all possible (a,S) pairs.
We define the dual restricted master problem to be problem (6) with the constraints restricted to
the (a,S) pairs in V̄ ; formally, it is:

maximize
α,β

∑
r∈R

αr +
∑
a∈A

βa (6a)

subject to
∑
r∈S

αr +βa ≤ f(a,S), ∀ (a,S)∈ V̄ . (6b)

Since V̄ ⊆ V , it is clear that the objective value of problem (6) is an upper bound on problem (5),
and that an optimal solution to problem (6) is not necessarily feasible for problem (5).

To solve problem (5) using the dual restricted master problem (6), we will use constraint gen-
eration, which we now describe at a high level. Let (α,β) be an optimal solution to the dual
restricted master problem (6). To check whether (α,β) is an optimal solution to the dual master
problem (5), we must verify that constraint (6b) holds for all (a,S) pairs in the set V . If, for
all (a,S) ∈ V , we have that

∑
r∈S αr + βa − f(a,S) ≤ 0, then (α,β) is feasible for problem (5),

and therefore an optimal solution of problem (5). Otherwise, if we find a (a,S) pair such that∑
r∈S αr + βa− f(a,S)> 0, then (α,β) is not feasible for problem (5), because the corresponding

(a,S) constraint in problem (5) is violated; having found such a (a,S) pair, we can then add it to
the set V̄ and solve the problem again, yielding a new solution (α,β). We then repeat the proce-
dure until we find a feasible solution. We note that generating constraints in the dual problem is
equivalent to generating columns in the primal problem (4).

In our implementation of this scheme, we equivalently replace constraint (6b), which ranges over
all aircraft, with A constraints that correspond to each individual aircraft, as follows:∑

r∈S

αr +β1 ≤ f(1, S), ∀ S ∈P1(R),

...∑
r∈S

αr +βA ≤ f(A,S), ∀ S ∈PA(R).

Given a candidate solution (α,β), we then check each family of constraints to determine if there
are any violated constraints, and add all such violated constraints. Algorithm 1 describes the full
constraint generation scheme.

We now comment on two important aspects of this method. First, Algorithm 1 is an algorithm
for solving the LP relaxation (4) and does not provide an integer feasible solution (a solution to
problem (3)). To produce an integer solution, we can solve problem (3) with the xa,S variables
restricted to those (a,S) pairs generated during the constraint generation algorithm, i.e., those in
V̄ . The integer solution that is produced in this way is not guaranteed to be an optimal solution
for problem (3). In practice, however, the objective value of this solution is often close to that

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 17

Algorithm 1 Constraint generation algorithm for solving dual problem (5).

Require: Initial set of (a,S) pairs V̄ .
Solve problem (6) with V̄ , to obtain dual solution (α,β).
For each a∈A, compute:
c̄a = maxS∈Pa(R)(

∑
r∈S αr +βa− f(a,S)),

Sa = arg maxS∈Pa(R)(
∑

r∈S αr +βa− f(a,S)).
while maxa∈A c̄a > 0 do

Set V̄ ← V̄ ∪{(a,Sa) a∈A, c̄a > 0}.
Solve problem (6) with V̄ , to obtain dual solution (α,β).
For each a∈A, compute:
c̄a = maxS∈Pa(R)(

∑
r∈S αr +βa− f(a,S)),

Sa = arg maxS∈Pa(R)(
∑

r∈S αr +βa− f(a,S)).
end while
return Optimal value of problem (5) with final V̄ set.

of problem (4); since the optimal value of problem (4) is a lower bound on the optimal value of
problem (3), this indicates that the integer solution is near-optimal.

Second, the key step in Algorithm 1 is finding the violated constraint, that is, finding the set
S maximizing

∑
r∈S αr + βa − f(a,S) for each a ∈ A. The problem of finding such a set S is a

difficult optimization problem, and solving it exactly is extremely computationally intensive. Due
to its difficulty, we opt to solve this problem in an approximate manner, rather than in an exact
manner. The approximate approach that we propose is a local search procedure that starts at a
set of requirements S0, and then iteratively searches through neighboring sets – obtained by either
deleting a requirement in S or adding a requirement not in S to S – to find sets that lead to an
improved value of the constraint violation

∑
r∈S αr +βa− f(a,S). Letting φ(a,S,α,β) denote the

constraint violation, that is,

φ(a,S,α,β) =
∑
r∈S

αr +βa− f(a,S),

we provide the pseudocode for the local search procedure as Algorithm 2.
Note that Algorithm 2 does not provably solve the separation problem maxS φ(a,S,α,β); it only

finds a locally optimal solution. More precisely, if it terminates with an S such that φ(a,S,α,β)>
0, then we have successfully identified a violated constraint; however, if it terminates with an S
such that φ(a,S,α,β)≤ 0, the algorithm does not guarantee the non-existence of an S for which
φ(a,S,α,β)> 0. The danger, therefore, is that by using this approximate solution approach, we
might declare the current dual solution (α,β) to be an optimal solution when in fact it is not.
One way of addressing this issue is to run Algorithm 2 not from one, but from multiple randomly
generated starting sets S0. In this way, if (α,β) is not optimal, then we increase the likelihood of
identifying an S for which φ(a,S,α,β)> 0.

4.4. Heuristics
The constraint generation method presented as Algorithm 1 starts from a user-specified set of
(a,S) pairs denoted by V̄ . The set V̄ can be chosen based on a known solution to the problem (3).
More precisely, suppose that we know a partitioning of the requirements R= S1 ∪ · · · ∪SA, where
Sa is the set of requirements assigned to aircraft a; we can then use this solution to warm start
Algorithm 1 by setting V̄ as

V̄ = {(1, S1)}∪ · · · ∪ {(A,SA)}.

By the definition of the dual restricted master problem (6), it is easy to see that the objective value
corresponding to V̄ will be exactly

∑
a∈A f(a,Sa). By inputting a solution S1, . . . , SA that achieves

Bertsimas et al.: The Airlift Planning Problem
18 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Algorithm 2 Local search procedure for solving dual separation problem.

Require: Aircraft a, initial requirement set S0; dual solution (α,β).
Set S← S0.
Compute φC = φ(a,S,α,β).
Compute:
VA = {S′ ∈P(R) | S′ = S ∪{r} for some r /∈ S}
VD = {S′ ∈P(R) | S′ = S \ {r} for some r ∈ S}

Compute:
φ̃= maxS′∈VA∪VD

φ(a,S′,α,β),
S̃ = arg maxS′∈VA∪VD

φ(a,S′,α,β).
while φ̃ > φC do

Set φC← φ̃.
Set S← S̃.
Compute:
VA = {S′ ∈P(R) | S′ = S ∪{r} for some r /∈ S}
VD = {S′ ∈P(R) | S′ = S \ {r} for some r ∈ S}

Compute:
φ̃= maxS′∈VA∪VD

φ(a,S′,α,β),
S̃ = arg maxS′∈VA∪VD

φ(a,S′,α,β).
end while
return Locally optimal solution S, objective value φC .

a good objective value, we can potentially reduce the number of iterations required by the column
generation algorithm.

In this section, we present two heuristics for constructing such a solution. The first heuristic that
we consider is an initialization heuristic for constructing an initial feasible solution. The second
heuristic is a local search heuristic that can be used to improve the solution generated by the
initialization heuristic.

We begin by describing the initialization heuristic. We start by assuming that all of the require-
ments are unassigned and setting the requirement set Sa of each aircraft to be the empty set ∅.
In each iteration, we select an unassigned requirement r, and attempt to add it to each of the
aircraft. For each aircraft a, adding r to that aircraft will either result in infeasibility (i.e., the
single aircraft problem for aircraft a with the requirements in Sa∪{r} is infeasible) or in a feasible
schedule. Among those aircraft a for which r is feasible, we assign r to the aircraft a which results
in the smallest change to the objective value of the whole solution. We then repeat the process for
the remaining requirements, until all of the requirements have been assigned. Algorithm 3 provides
a pseudocode description of the algorithm.

There are three aspects of Algorithm 3 that are worth noting. The first is that the behavior of
Algorithm 3 is highly dependent on the order in which we proceed through the requirements. In our
implementation of Algorithm 3 in our numerical experiments in Section 5, we randomly order the
requirements. The second aspect, which relates to the first, is that Algorithm 3 is not guaranteed
to result in a feasible solution. In the case that a requirement cannot be feasibly assigned to any
of the aircraft, we re-start Algorithm 3 with a new random ordering; in our numerical experiments
in Section 5, a feasible solution could be found in almost all cases on the first try. Finally, due to
the randomization of the requirements, running Algorithm 3 multiple times can produce different
solutions, some of which may be substantially better than others. In our implementation of this
algorithm in Section 5, we run Algorithm 3 ten times to produce ten initial solutions, from which
we retain the one with the best objective.

We now describe the second heuristic, which is a local search heuristic. We start with a partition
S1, . . . , SA of the requirements, where Sa represents the requirements assigned to aircraft a. In

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 19

Algorithm 3 Initialization heuristic for constructing initial feasible solution.

Initialize S1←∅, . . . , SA←∅.
Initialize unassigned requirement set Runassigned←R.
Compute objective value Z←

∑
a∈A f(a,Sa).

while |Runassigned|> 0 do
Select r from Runassigned.
For each a∈A, compute Za← f(a,Sa ∪{r}) +

∑
a′∈A\{a} f(a′, Sa′).

Compute k∗← arg mina :Za<+∞Za.
Update Sa∗← Sa∗ ∪{r}.
Update Z←Za∗ .
Update Runassigned←Runassigned \ {r}.

end while
return Partition S1, . . . , SA, objective value Z.

each iteration, we select one of the requirements, and consider the new partition that results from
removing that requirement from its current aircraft, and assigning it to one of the other aircraft;
there are A− 1 such possible new partitions. We accept the partition that most improves on the
current partition, if at least one such partition exists; otherwise, we repeat this process for each of
the other requirements we have not yet considered. We terminate if all such neighboring partitions
of the current partition, obtained by moving a single requirement to a different aircraft, are unable
to yield an improvement over the current partition. Algorithm 4 provides a pseudocode description
of this local search heuristic.

Algorithm 4 Local search heuristic for finding an improved solution.

Require: Initial partition S1, . . . , SA.
Compute Z←

∑
a∈A f(a,Sa).

Initialize Runtested←R.
while |Runtested|> 0 do

Select r from Runtested.
Set ar to be aircraft of r (i.e., ar = a such that r ∈ Sa).
For each a∈A\{ar}, compute
Za← f(a,Sa ∪{r}) + f(ar, Sar \ {r}) +

∑
a′∈A\{a,ar} f(a′, Sa′).

if mina∈AZa <Z then
Set a∗← arg mina∈AZa.
Update Sa∗← Sa∗ ∪{r}.
Update Sar ← Sar \ {r}.
Update Z←mina∈AZa.
Update Runtested←R\{r}.

else
Set Runtested←Runtested \ {r}.

end if
end while
return Locally optimal partition S1, . . . , SA, objective value Z.

4.5. Overall algorithmic approach
Our overall algorithmic approach for solving problem (3) is as follows:

1. Initialization: Execute Algorithm 3 (the initialization heuristic) to obtain an initial feasible
partition S1, . . . , SA.

Bertsimas et al.: The Airlift Planning Problem
20 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Figure 1 Plot of geographic locations of ports in the continental United States.

2. Local search: Starting from the initial partition S1, . . . , SA, execute Algorithm 4 (the local
search heuristic) to obtain an improved partition S′1, . . . , S

′
A.

3. Column/constraint generation: Set V̄ as

V̄ = {(1, S′1)}∪ · · · ∪ {(A,S′A)}

and execute Algorithm 1 (the constraint generation procedure) with this initial set V̄ and using
the approximate subproblem heuristic given by Algorithm 2.

4. Final integer solution: Using the final set V̄ of (a,S) pairs generated in Step 3, solve the
integer restricted master problem (i.e., problem (3) restricted to V̄ instead of V) to obtain an
integer solution x. The final partition is given by S′′1 , . . . , S

′′
A, where S′′a is the (unique) set for which

xa,S′′a = 1 in the solution x.

5. Results
5.1. Background
In this section, we begin by describing the problem instances that we use in our numerical
experiments, the hyperparameters and implementation details of our algorithmic approach and
the baseline/status quo method that we will use to benchmark our algorithmic approach.

Data preprocessing. We first constructed a “master” set of ports. We assumed that this set
consists of all possible United States Air Force (USAF) bases in the continental United States,
leading to a set of 174 different airbases. For the aircraft, we assume that aircraft can be one of
eight different cargo aircraft types used by the USAF. Figure 1 shows the distribution of ports
in the continental United States, while Table 1 displays the eight different aircraft types, along
with nominal values of their capacities and speeds. In the instances that we will shortly describe,
aircraft travel times between pairs of events (the τe,e′,a values) were calculated by computing the
distance between the latitude-longitude pairs using the haversine formula and converting this
distance into a time via the nominal speed of the aircraft.

Problem instances. We consider two different sets of instances, described below:
1. T instances. In these instances, the data is generated as follows:
• Ports: Ten unique ports are selected from the master list of 174 ports.

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 21

Table 1 Cargo aircraft types considered in numerical experiments.

Aircraft Type Aircraft Name Speed (miles/hour) Capacity (short tons)

1 C-5 Galaxy 541 145
2 C-12 Huron 334 7.5
3 C-17 Globemaster 500 85
4 C-23 Metroliner 218 2.5
5 C-27 Spartan 362 12.5
6 C-40 615 20
7 C-130 Hercules 374 22.5
8 C-130 Super Hercules 400 22

• Requirements: Each requirement is assumed to have a weight of 12 short tons. The port of each
pickup and dropoff event is uniformly randomly selected from the ten ports. For each requirement,
the pickup and dropoff time windows are assumed to be equal (i.e., `Pickup(r) = `Dropoff(r), uPickup(r) =
uDropoff(r), BPickup(r) =BDropoff(r)). For each requirement r, we set `Pickup(r) = 24×q, where q is chosen
uniformly randomly from {2, . . . ,18}; we set uPickup(r) = `Pickup(r) + 12, and we set BPickup(r) = 12.
• Aircraft : Each of the A aircraft is uniformly randomly selected to be one of aircraft types

7 and 8 (C-130 Hercules and C-130 Super Hercules, respectively). We set `Start(a) = `End(a) = 0,
uStart(a) = uEnd(a) = 24∗20 and BStart(a) =BEnd(a) = 0; in words, the aircraft can be used over a time
horizon of twenty days, and must complete their missions by the end of the 20th day. The port of
each Start(a) and End(a) event is uniformly randomly selected from the ten unique ports.
We consider values of A∈ {10,20,50,100}. We fix R=A. We consider twenty randomly generated
T instances for A ∈ {10,20,50}; for A= 100, we only consider ten instances, due to the computa-
tionally demanding nature of such instances.

2. R instances. In addition to the T instances, we consider a set of instances derived from
a set of requirements provided to us by USTRANSCOM. This set of requirements is used by
USTRANSCOM analysts to internally benchmark their scheduling policies and is representative of
a typical planning problem faced by USTRANSCOM in practice. The data set contains 111 require-
ments and includes partial time window information (`Pickup(r), `Dropoff(r), uPickup(r) and uDropoff(r)

values) and weight information (wPickup(r) values) for each requirement. With regard to the remain-
ing (missing) data, we proceed as follows:
• Ports: The pickup and dropoff ports are indicated by a port ID number; due to the sensitive

nature of the data, the precise port that each port ID value corresponds to was not provided to
us. We observed twenty unique port ID values; to fill in the port information, we randomly select
twenty unique ports from the master list of 174 ports, and assigned each port ID to one of the
twenty chosen ports.
• Requirements: The maximum slack value Be of each pickup and dropoff event was not provided

to us. We thus assumed a maximum slack of 1 day for each pickup and dropoff event, i.e.,BPickup(r) =
BDropoff(r) = 24. With the slacks defined in this way, these instances involve a time horizon of 44
days.
• Aircraft : The data set did not provide the set of aircraft that were available at the time to

plan these instances. Thus, we considered A aircraft, where the type of each aircraft is uniformly
randomly selected from all eight aircraft types in Table 1, and the start and end port of each
aircraft was uniformly randomly selected from the twenty unique ports.
We consider instances with A= 100 aircraft and all of the requirements (R= 111). We randomly
generate ten instances using the procedure outlined above.

We also consider a set of smaller scale instances derived from this data. To obtain these instances,
we first randomly select R requirements without replacement from the complete set of 111 require-
ments, and then fill in all missing data as described above. For these instances, we set A=R, and
let R range in {10,20,50}. For each value of R, we randomly generate twenty instances.

Bertsimas et al.: The Airlift Planning Problem
22 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

In all of the above instances, the priorities πe of all events (used to form the objective function in
problems (1) and (2)) are set to 1, and the weight C of the uptime is set to 1.

Software/Hardware. All linear and mixed-integer programming problems are solved using
Gurobi 6.5 (Gurobi Optimization, Inc. 2016) and all algorithms are implemented in Julia
(Bezanson et al. 2017) using the Julia for Mathematical Programming (JuMP) library (Lubin and
Dunning 2015, Dunning, Huchette, and Lubin 2017). All experiments were conducted on a server
with a 12-core 3.33GHz Intel Xeon X5680 processor and 96GB RAM.

Baseline method. To understand the relative merits of our algorithmic approach, we will compare
our algorithmic approach against a baseline method. This baseline method is intended to roughly
represent the current approach that USTRANSCOM uses to plan airlift operations. As discussed
in Section 1, USTRANSCOM does not have a globally optimized approach for scheduling airlift
operations. However, it has been observed that planners typically schedule a set of requirements one
by one, in the order in which the requirements are entered into the system; this order is typically
correlated with the earliest pickup time of each requirement.

For our baseline heuristic, we will therefore consider a modified version of Algorithm 3 where
the order in which the requirements are assigned to the aircraft corresponds to the order of
their earliest pickup times, that is, their `Pickup(r) values. Although this baseline heuristic is more
sophisticated than current USTRANSCOM practice due to the use of MIP in the single aircraft
scheduling component of Algorithm 3, it is a reasonable representation of how USTRANSCOM
would currently schedule a set of requirements.

Our approach (Section 4.5). Unless stated otherwise, our overall approach is implemented as
follows. We run the initialization phase (Step 1 of our approach in Section 4.5; this is Algorithm 3)
ten times. From each of the ten initial solutions produced by Algorithm 3, we execute the local
search phase (Step 2 of our approach in Section 4.5; this is Algorithm 4). Out of the ten locally
optimized points, we use the best one to run the column/constraint generation algorithm (Step 3
of our approach of Section 4.5; this is Algorithm 1). For ease of exposition, we will refer to the ini-
tialization procedure (Algorithm 3) as H1; we will refer to the local search procedure (Algorithm 4)
as H2; and we will refer to the column/constraint generation procedure (Algorithm 1) as CG.

In the execution of all three phases – H1, H2 and CG – we solve the single aircraft problem (2)
to a time limit of two seconds; when reporting the objective value of the final solution of each
phase, we compute it by solving the single aircraft problem (2) without any time limit. We apply
the same time limits for the baseline method.

With regard to H1, we randomize the order in which we progress through the requirements.
Also, as noted in Section 4.4, it is possible that H1 may not find a feasible solution on its first run.
To address this possibility, we implemented H1 to be re-executed (with a new random ordering of
the requirements) up to four times, for up to five runs in total.

With regard to CG, we use the approximate subproblem heuristic described as Algorithm 2. At
each iteration of CG, we repeat Algorithm 2 up to ten times to find a violated constraint; if a
violated constraint is not found after ten iterations, the algorithm is terminated. The initial starting
set S0 of Algorithm 2 is randomly generated, with each requirement r being included in the set S0

independently with probability 2/R. This choice was made based on preliminary experimentation
with the T instances showing that the number of requirements assigned to each aircraft is small;
by applying our specific form of random generation, we bias the initial set of requirements to a
set that is small (the expected number of requirements in the set is R · (2/R) = 2). In addition,
when |S0| is very large, the single aircraft problem (2) requires more time to solve, which hinders
the rate at which Algorithm 2 can locally optimize the set of requirements S. With regard to time
limits, we terminate each run of Algorithm 2 after 30 seconds of execution, and we terminate the
overall CG procedure after twelve hours of execution.

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 23

Table 2 Results for full MIP
problem (1), for A=R= 10 and

A=R= 20.

Avg. Max. Gap
A R Time (s) Time (s) (%)

10 10 1590.2 8917.6 0.00
20 20 21605.2 21607.3 –

The gap is omitted for the A = R = 20

instances, as the relaxation could not be

solved for any of those instances within the
three hour time limit.

5.2. Necessity of large-scale approach
The purpose of our first experiment is to establish the necessity of the overall approach that we
summarize in Section 4.5. In this experiment, we attempt to solve the T instances described in
Section 5.1 by directly solving the full MIP problem (1), for A = R = 10 and A = R = 20. We
terminate the MIP after three hours of computation.

The results are shown in Table 2 for each of the T instances with A=R= 10 and A=R= 20.
From this table, we can see that although the A=R= 10 instances are solved relatively quickly
to full optimality, the A=R= 20 instances are not; in fact, in all of the A=R= 20 instances, the
relaxation could not be solved within the three hour time limit. Moreover, even for the A=R= 10
instances, while the average time is on the order of 20 minutes, some instances can take significantly
longer, with one instance taking almost 2.5 hours. The main takeaway from this table is that
solving the full MIP formulation of the airlift planning problem is not a feasible option for realistic,
large-scale problem instances.

5.3. Simulated data experiment
In this section, we compare the performance of our algorithmic approach in Section 4.5 against the
baseline approach (see Section 5.1). We consider the T instances, which consist of simulated data.
We consider the twenty instances for A∈ {10,20,50} and the ten instances for A= 100.

Table 3 shows results pertaining to the average objective value achieved by the different methods.
As mentioned in Section 5.1, the value of C in the objective function of the single aircraft problem
is set to 1, so that the objective represents the sum of the total delays of all events and the sum of
the uptimes of all of the aircraft. The column “Avg. Improv. Baseline→ CG” indicates the average
relative reduction (over the instances for each (A,R) combination) in the objective value when
comparing the CG solution relative to the baseline solution; the column “Max. Improv. Baseline
→ CG” indicates the best relative reduction over the instances for each (A,R) combination. The
column “CG Gap” indicates the approximate optimality gap of the CG solution, which is defined as
100%× (Z∗IP,CG−Z∗LP,CG)/Z∗LP,CG, where Z∗IP,CG is the objective value of the final integer solution
produced by CG and Z∗LP,CG is the objective value of the LP relaxation (the value of problem (6)
when CG terminates with the approximate separation problem heuristic, Algorithm 2). This value
is averaged over the instances for each (A,R) combination.

From this table, we can see that the average objective of H1 is lower than that of the baseline
method, that H2 improves upon the H1 solutions, and that CG further improves upon the best H2
solution. We can also see that the improvement generated by our overall algorithmic approach over
the baseline method is substantial. By running H1, H2 and CG together, the objective value can be
reduced by about 8 to 12% on average relative to the baseline method; in the best case, the reduction
in the objective value can be as large as 20%. In addition, we can consider the approximate gap of
the ultimate solution produced by CG. Although the bound ZLP is an approximate bound and is
not the provable objective value of problem (4), we can see that the approximate gap is fairly low
– about 1.5% or lower.

Bertsimas et al.: The Airlift Planning Problem
24 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Table 3 Objective values (hours of total delay and uptime) and related metrics of baseline, H1, H2 and CG
methods for T instances.

Baseline H1 H2 CG CG Avg. Improv. Max. Improv. Avg. CG
A R Obj. Obj. Obj. Obj. Bound Baseline → CG Baseline → CG Gap

(hrs) (hrs) (hrs) (hrs) (hrs) (%) (%) (%)

10 10 42.6 39.7 39.7 38.9 38.9 8.4 19.7 0.00
20 20 96.6 89.7 88.4 85.0 84.9 11.8 18.8 0.10
50 50 196.8 188.4 182.8 173.4 172.5 11.8 17.6 0.54
100 100 277.4 270.1 258.0 247.9 244.6 10.6 15.1 1.32

Table 4 Computation times of baseline, H1, H2 and CG methods for T instances.

Baseline H1 H2 CG H1 + H2 H1+H2+CG
A R Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

10 10 0.4 4.0 5.7 23.7 9.7 33.4
20 20 2.9 22.9 48.3 333.3 71.2 404.5
50 50 29.7 338.7 1053.0 10671.4 1391.7 12063.1
100 100 382.7 4239.9 16684.9 44536.4 20924.8 65461.2

Aside from the objective value, it is also important to compare the methods in their computation
time. Table 4 shows the average computation time required by the different methods over the T
instances, as well as the total time of our algorithmic approach (Section 4.5). We can see that
the baseline method is the fastest method, followed by H1, H2 and finally CG. Note that our
implementation of H1 involves running H1 ten different times, and selecting the best solution;
therefore, we should expect that the total time for the H1 phase of our overall approach should be
about ten times larger than that of baseline. The H2 phase in general requires more computation
time than the H1 phase. However, even in the largest set of instances (A=R= 100), the H1 phase
(with ten repetitions) requires just over one hour on average; similarly, the H2 phase (with the
ten starting points produced by H1) requires just under five hours. Note from Table 3 that the
solutions produced by H1 and H2 already provide a substantial improvement over the baseline
method; thus, with only six hours of combined time, H1 and H2 can be used to produce significantly
better solutions than the baseline method. With regard to the CG method, we can see that CG in
general requires the most amount of time. For A= 10 and A= 20, the method completes within
five minutes; for A= 50, it requires about three hours; and for A= 100, the twelve hour time limit
is exhausted in all of the corresponding instances. These results indicate that if we are satisfied
with the heuristic solution generated by H1 and H2, we can stop there; otherwise, with a modest
amount of additional computation time, CG can further improve these solutions and provide us
an approximate sense of how optimal they are.

With regard to the column generation phase of the method, it is also interesting to examine the
quality of the solution with each iteration of column generation. Figure 2 shows the evolution of the
master problem objective with each iteration of CG for one representative T instances with A=R=
50.. The line labeled “LP” shows the optimal objective of the relaxed master problem (problem (4))
restricted to the set of columns that have been cumulatively generated at each iteration. The line
labeled “MIP” shows the optimal objective of the integer master problem (problem (3)) restricted
to the same set of columns at each iteration. Note that the “LP” line is always below the “MIP”
line as the former corresponds to the relaxed problem (4). We can see two behaviors from this
plot. First, the LP objective is generally steadily decreasing with each iteration. Second, the MIP
objective generally follows the LP objective closely, but does not change as regularly as the LP
objective changes; this is to be expected, because not every column generated for the LP relaxation
can be used to form a bona fide integer solution.

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 25

170

175

180

0 10 20 30 40
Iteration

O
bj

ec
tiv

e
(h

)

Master type
LP
MIP

Figure 2 Example of the evolution of the objective value of the relaxed master problem (line labeled “LP”) and
the integer master problem (line labeled “MIP”) with each CG iteration, shown for a single T instance
with A = R = 50.

Finally, it is interesting to compare the solutions in terms of their qualitative behavior – namely,
what is the delay, uptime and total number of aircraft used by the solutions. Tables 5, 6 and
7 show the average delay, uptime and total number of aircraft, respectively, averaged over the
instances. From these tables, we can see that for our overall algorithmic approach, the objective
values shown in Table 3 are mostly made up of uptime; the average delay for H1, H2 and CG
is extremely small, indicating that our method is able to find solutions that ensure that all or
nearly all requirements are picked up and delivered without delay. Moreover, we can see that as
we progress from the baseline solution to the CG solution, the total delay generally decreases (for
example, with A=R= 100, the total delay drops from 2.3 hours to 0.5 hours) and the total uptime
also decreases. With regard to the number of aircraft, we can see that the solutions produced by our
approach (the H1, H2 and CG solutions) are relatively efficient in terms of the number of aircraft
used, and that the number of required aircraft decreases with higher numbers of requirements (for
example, the CG solution uses over half of the aircraft for A=R= 20, but just under 30% of the
aircraft for A=R= 100). More importantly, compared to the baseline method, our approach is able
to achieve a significant reduction in the number of aircraft it uses. For example, with A=R= 50,
the baseline method uses on average 26.4 out of the 50 aircraft, whereas the CG solution uses on
average 20.8 aircraft; a reduction of 5.6 aircraft on average. We also emphasize that this reduction
in aircraft is achieved with a simultaneous reduction in delay and uptime. These results underscore
the potential of our overall algorithmic approach to deliver superior schedules compared to existing
practice at USTRANSCOM.

5.4. Optimality experiment
One question we may have, when considering the results in Section 5.3, is regarding the lower
bound produced by CG. In particular, due to the heuristic nature of Algorithm 2 that is used to
solve the separation problem in Algorithm 1, the lower bound produced by Algorithm 1 is only
an approximate bound, and the optimality gap that we compute for the end solution with respect
to this bound (see Table 3) is therefore only an approximate gap. The question, then, is how far

Bertsimas et al.: The Airlift Planning Problem
26 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Table 5 Delay (in hours) of baseline, H1, H2 and
CG solutions for T instances.

Baseline H1 H2 CG
Delay Delay Delay Delay

A R (hrs) (hrs) (hrs) (hrs)

10 10 0.0 0.0 0.0 0.0
20 20 0.1 0.1 0.0 0.0
50 50 1.9 1.5 0.7 0.9
100 100 2.3 2.0 0.8 0.5

Table 6 Uptime (in hours) of baseline, H1, H2 and CG
solutions for T instances.

Baseline H1 H2 CG
Uptime Uptime Uptime Uptime

A R (hrs) (hrs) (hrs) (hrs)

10 10 42.6 39.7 39.7 38.9
20 20 96.5 89.6 88.4 84.9
50 50 194.9 186.9 182.1 172.6
100 100 275.0 268.1 257.2 247.3

Table 7 Number of aircraft used in baseline, H1, H2 and CG solutions
for T instances.

Baseline H1 H2 CG
A R # Aircraft # Aircraft # Aircraft # Aircraft

10 10 8.3 7.9 7.9 7.9
20 20 14.2 12.9 12.8 12.7
50 50 26.4 23.5 21.6 20.8
100 100 38.8 35.2 30.2 29.5

away is the approximate lower bound from the true lower bound and therefore, how close is the
approximate gap to the true optimality gap?

To answer this question, we consider the T instances with A=R = 10 and A=R = 20, which
were studied in Section 5.3. We use the final integer solution produced by CG and the final lower
bound produced by CG with the heuristic separation procedure (Algorithm 2). We compare this
integer solution and this lower bound to the exact lower bound, i.e., the exact optimal value of
problem (4). This exact lower bound is obtained by running the same CG procedure as before, but
solving the exact MIP formulation of the subproblem when Algorithm 2 fails to find a violated
constraint. We refer to this exact CG procedure as “ExactCG”.

To analyze these results, we let Z∗LP,ExactCG denote the lower bound obtained from ExactCG.
We also use (as in Section 5.3) Z∗LP,CG to denote the (approximate) lower bound obtained from
CG and Z∗IP,CG to denote the objective value of the integer solution obtained from CG. We use
“BoundGap” to denote the how far away the approximate lower bound is from the exact lower
bound:

BoundGap = 100%×
Z∗LP,CG−Z∗LP,ExactCG

Z∗LP,ExactCG

.

We use “SolGap” to denote how far away the integer solution produced by CG is from the exact
lower bound:

SolGap = 100%×
Z∗IP,CG−Z∗LP,ExactCG

Z∗LP,ExactCG

.

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 27

Table 8 Comparison of final integer solution and lower bound from CG to the
exact lower bound from ExactCG.

A R Z∗IP,CG Z∗LP,CG Z∗LP,ExactCG BoundGap (%) SolGap (%)

10 10 38.9 38.9 38.9 0.00 0.00
20 20 85.0 84.9 84.7 0.17 0.28

Table 9 Comparison of computation time required by CG and ExactCG.

Avg. CG Max. CG Avg. ExactCG Max. ExactCG
A R Time (s) Time (s) Time (s) Time (s)

10 10 23.7 36.8 53.2 95.3
20 20 333.3 828.8 37455.9 154414.0

Table 8 shows Z∗LP,ExactCG, Z∗IP,CG and Z∗LP,ExactCG, as well as BoundGap and SolGap, averaged
over the twenty instances for A=R= 10 and A=R= 20. (We do not consider the larger instance
sets because the exact subproblem MIP formulation required a prohibitively large amount of time
to solve for those instances.) We can see that despite the heuristic nature of Algorithm 2, using this
heuristic to solve the separation problem within the CG procedure (Algorithm 1) leads to the same
lower bound as solving the separation problem exactly for A = R = 10 (the average BoundGap
value is exactly 0%) and a very close lower bound for A=R = 20 (the average BoundGap value
is 0.17%). In addition, we can also see that the integer solution produced by CG is optimal for
A = R = 20, and on average is extremely close to optimal for A = R = 20. The main message of
this experiment is that while the lower bound produced by CG is not theoretically guaranteed to
be a true lower bound, empirically we have some assurance that it should be close (if not exactly
equal) to the true lower bound.

In addition, it is also worthwhile to compare the timing performance of CG and ExactCG. Table 9
shows the average and maximum time, taken over the twenty instances with A = R = 10 and
A=R= 20, for both CG and ExactCG. From this table, we immediately see that the computation
time required for the ExactCG approach is extremely large (for A = R = 20, it requires over 10
hours on average, and in one instance almost two days of computation). In contrast, the time
required for CG, which uses the heuristic subproblem procedure (Algorithm 2), is a fraction of
what it is for ExactCG. For example, for A=R= 20, it requires about five minutes on average, and
in one case almost 15 minutes. This table, together with the previous table (Table 8) establishes
the value of CG over ExactCG; by using CG instead of ExactCG, we are able to obtain extremely
close (if not identical) lower bounds, but in a fraction of the time needed for ExactCG.

5.5. Realistic data experiment
Finally, we compare our algorithmic approach against the baseline method using the planning
instances derived from USTRANSCOM’s internal requirement data set (the R instances; see Sec-
tion 5.1). Our implementation of our algorithmic approach is the same as in Section 5.3, with
one small modification. We still execute H1 ten times, but for the local search phase, instead of
executing H2 for all ten initial solutions constructed by H1, we execute it from the best initial
solution (the one with the lowest objective value) found by H1. This modification was necessary
due to the large number of instances, and the instances being more challenging in that H2 requires
more time to run than it did for the T instances (see Section 5.3). We do note that one could
potentially run H2 in parallel on the instances produced by H1, as the multiple runs of H2 would
not be dependent on each other.

We begin by examining the objective values. Table 10 shows the average objective value achieved
by the different methods; as in Section 5.3, the objective represents the sum of the total delay and
the total uptime. From this table, we can see that, as for the T instances in Section 5.3, there

Bertsimas et al.: The Airlift Planning Problem
28 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

Table 10 Objective values and related metrics of baseline, H1, H2 and CG methods for R instances.

Baseline H1 H2 CG CG Avg. Improv. Max. Improv. CG
A R Obj. Obj. Obj. Obj. Bound Baseline → CG Baseline → CG Gap

(hrs) (hrs) (hrs) (hrs) (hrs) (%) (%) (%)

10 10 169.5 105.9 105.4 104.4 104.1 24.4 91.2 0.53
20 20 275.7 130.9 128.6 125.7 125.0 38.0 92.7 0.94
50 50 187.9 162.9 153.4 147.8 138.8 15.9 66.1 6.44
100 111 409.5 334.3 312.8 312.4 298.3 17.8 59.8 4.79

are improvements in the objective value from using our overall approach. These improvements,
however, are more dramatic than for the T instances. In particular, the average improvement ranges
from 15 to 40%, while in the best case, the improvement can range anywhere from about 60% to
over 90%. In addition, for the A=R= 20 instances, there were two instances where the baseline
method failed to produce a feasible solution. (These two solutions were not used to compute the
average baseline objective value.) In contrast to the baseline method, the H1 method was able to
find feasible solutions for all of the instances tested. With regard to the CG method, we can see
that in general the improvement generated by CG is smaller on this set of instances than it is on
the T instances; however, the CG method is still useful to consider here because it is able to give
us an approximate bound of the optimal value. With regard to the CG bound and the approximate
gap from CG, we can see that the gaps are of a reasonable magnitude (below 1% for A∈ {10,20}
and below 7% for A∈ {50,100}).

Table 11 compares the methods in terms of computation time. The column “H1 Time” reports
the time required to execute H1 ten times, averaged over the instances for each value of A, as in
Section 5.3. However, as alluded to earlier, H2 was only executed once in these instances, from
the best solution produced by H1; therefore, the column “H2 Time” reports the time to execute
H2 once, averaged over all of the instances. As with the T instances, the baseline method requires
the least amount of time to run. The average time to run both H1 (with ten executions) and H2
(with one execution) is reasonable; even in the largest set of instances (A=R= 100), this time is
no more than approximately six hours.

Comparing Table 11 to Table 4, the average time required to execute H2 once for the R instances
is comparable or slightly higher than the average time required to execute H2 once for the T
instances. The CG method also requires more time to execute for these instances than it does
for the T instances. The main reason for this increase in the time for H2 and CG is that the R
instances are less constrained; the time windows for the pickup and dropoff events found in the
data are much wider than those in the simulated T instances. This has two consequences. The first
consequence is that to achieve low delay and low uptime, one can load some aircraft with a large
number of requirements. As a result, the requirement sets that are checked in the H2 phase tend to
be large ones, so the time required to solve the single aircraft problem (2) is large. The same is true
for the separation problem procedure (Algorithm 2) of the CG phase. The second consequence is
that due to the large time windows, the single aircraft problem (2) is less constrained and admits
more solutions, which makes it harder to solve than if the time windows were smaller (as in the
simulated instances tested in Section 5.3).

Finally, we can compare the solutions at a finer level. Tables 12, 13 and 14 show the average delay,
uptime and total number of aircraft, respectively, averaged over the instances. As for the simulated
instances, we can see that for our overall algorithmic approach, the objective values shown in
Table 10 are mostly made up of uptime; the average delay for H1, H2 and CG is extremely small,
indicating that our method is able to find solutions that ensure that all or nearly all requirements
are picked up and delivered without delay. We can also see that the solutions produced by our
approach are very efficient in terms of the number of aircraft they use, even more so than they
are for the simulated instances in Section 5.3. For example, with A= 100 and R= 111, our overall

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 29

Table 11 Computation times (in seconds) of baseline, H1, H2 and CG methods for R
instances.

Baseline H1 H2 CG H1+H2 H1+H2+CG
A R Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

10 10 4.6 69.0 16.0 305.0 85.0 390.1
20 20 22.7 406.9 83.6 3532.2 490.5 4022.7
50 50 220.7 3001.5 1075.3 43750.5 4076.8 47827.3
100 111 1213.4 13632.3 5995.0 43644.7 19627.3 63272.0

Table 12 Delay (in hours) of baseline, H1, H2
and CG solutions for R instances.

Baseline H1 H2 CG
Delay Delay Delay Delay

A R (hrs) (hrs) (hrs) (hrs)

10 10 0.1 0.4 0.2 0.2
20 20 0.2 0.4 0.4 0.1
50 50 0.1 0.1 0.0 0.0
100 111 3.6 0.0 0.0 0.0

Table 13 Uptime (in hours) of baseline, H1, H2 and CG
solutions for R instances.

Baseline H1 H2 CG
Uptime Uptime Uptime Uptime

A R (hrs) (hrs) (hrs) (hrs)

10 10 169.3 105.5 105.2 104.2
20 20 275.5 130.5 128.3 125.6
50 50 187.8 162.8 153.4 147.7
100 111 405.9 334.3 312.8 312.4

Table 14 Number of aircraft used in baseline, H1, H2 and CG
solutions for R instances.

Baseline H1 H2 CG
A R # Aircraft # Aircraft # Aircraft # Aircraft

10 10 3.6 3.5 3.4 3.4
20 20 6.6 6.4 5.9 5.7
50 50 12.9 12.5 11.4 12.4
100 111 23.0 23.8 22.0 22.1

approach is able to find a solution that delivers the requirements using only roughly 20% of the
available aircraft.

Comparing these results to the baseline solution, the baseline achieves smaller delays for the
smaller instances (A≤ 20) but equal or higher delays for the larger instances (for example, with
A= 100, R= 111, the average delay is 3.6 hours, compared to 0.0 hours for the H1, H2 and CG
solutions). With regard to uptime, H1, H2 and CG lead to a significant reduction in uptime over
the baseline method. Finally, when comparing the number of aircraft, the baseline method is also
fairly efficient in its use of aircraft, but our approach is able to find and exploit opportunities to

Bertsimas et al.: The Airlift Planning Problem
30 Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS

reduce the number of aircraft; for example, the average number of aircraft decreases by 0.9 – almost
one whole aircraft – for A=R= 20 and for A= 100, R= 111.

6. Conclusions
In this paper, we developed an approach based on modern optimization for solving the airlift
planning problem faced by USTRANSCOM. The approach involves decoupling the planning prob-
lem into two problems – the problem of assigning requirements to aircraft and the problem of
scheduling the corresponding pickup and dropoff events for each aircraft – and solving the problem
using an initialization heuristic, a local search heuristic and a column/constraint generation pro-
cedure. We show using synthetic data and planning data used internally at USTRANSCOM that
our approach is able to design missions that ensure the requirements are delivered with almost
no delay, while reducing the total aircraft time used by over 10% on average relative to existing
practice at USTRANSCOM; moreover, it is capable of doing so within an operationally feasible
time frame. Given the very high cost associated with transporting requirements through airlift,
our results suggest that our method can lead to significant cost savings for USTRANSCOM.

There are a number of interesting directions in which our approach can be extended. One major
direction is to consider uncertainties in the problem. In the formulation of the problem in this paper,
we assume that the data is known to the decision maker: we know the set of requirements, their
weights and the travel times of the aircraft a priori. In reality, the set of requirements may not be
known a priori; as time progresses, new requirements may materialize that need to be incorporated
into the existing schedule. Similarly, the weights of the requirements and the time required by an
aircraft to travel from one port to another may be subject to uncertainty. To address these and
similar aspects of the problem, one may consider an adaptive and robust optimization approach
(see Bertsimas, Brown, and Caramanis 2011).

Acknowledgments
The authors thank the associate editor and two anonymous referees for their thoughtful suggestions that
have helped to improve the paper. The authors also thank Patrick McLeod and Theresa Baynes at
USTRANSCOM’s Joint Distribution Process Analysis Center for their support of this research.

References
Bent R, Van Hentenryck P, 2006 A two-stage hybrid algorithm for pickup and delivery vehicle routing problems

with time windows. Computers & Operations Research 33(4):875–893.

Bertsimas D, Brown DB, Caramanis C, 2011 Theory and applications of robust optimization. SIAM Review
53(3):464–501.

Bertsimas D, Gupta S, Lulli G, 2014 Dynamic resource allocation: A flexible and tractable modeling frame-
work. European Journal of Operational Research 236(1):14–26.

Bertsimas D, Lulli G, Odoni A, 2011 An integer optimization approach to large-scale air traffic flow man-
agement. Operations Research 59(1):211–227.

Bertsimas D, Stock Patterson S, 1998 The air traffic flow management problem with enroute capacities.
Operations Research 46(3):406–422.

Bertsimas D, Stock Patterson S, 2000 The traffic flow management rerouting problem in air traffic control:
A dynamic network flow approach. Transportation Science 34(3):239–255.

Bezanson J, Edelman A, Karpinski S, Shah VB, 2017 Julia: A fresh approach to numerical computing. SIAM
Review 59(1):65–98.

Carnes TA, Henderson SG, Shmoys DB, Ahghari M, MacDonald RD, 2013 Mathematical Programming
Guides Air-Ambulance Routing at Ornge. Interfaces 43(3):232–239.

Cordeau JF, Laporte G, Potvin JY, Savelsbergh MWP, 2004 Transportation on demand. Transportation,
handbooks in operations research and management science 14:429–466.

Bertsimas et al.: The Airlift Planning Problem
Transportation Science 00(0), pp. 000–000, c© 0000 INFORMS 31

Desrochers M, Lenstra JK, Savelsbergh MWP, Soumis F, 1988 Vehicle routing with time windows: optimiza-
tion and approximation. Vehicle routing: Methods and studies 16:65–84.

Dumas Y, Desrosiers J, Soumis F, 1991 The pickup and delivery problem with time windows. European
Journal of Operational Research 54(1):7–22.

Dunning I, Huchette J, Lubin M, 2017 Jump: A modeling language for mathematical optimization. SIAM
Review 59(2):295–320.

Garey MR, Johnson DS, 1979 A Guide to the Theory of NP-Completeness. WH Freemann, New York .

Gurobi Optimization, Inc, 2016 Gurobi Optimizer Reference Manual. URL http://www.gurobi.com.

Jagabathula S, 2014 Assortment optimization under general choice, (October 21, 2014). Available at SSRN:
http://ssrn.com/abstract=2512831.

Laporte G, 2007 What you should know about the vehicle routing problem. Naval Research Logistics 54(8):811–
819.

Lu Q, Dessouky M, 2004 An exact algorithm for the multiple vehicle pickup and delivery problem. Trans-
portation Science 38(4):503–514.

Lubin M, Dunning I, 2015 Computing in Operations Research using Julia. INFORMS Journal on Computing
27:238–248.

Mahmoudi M, Zhou X, 2016 Finding optimal solutions for vehicle routing problem with pickup and deliv-
ery services with time windows: A dynamic programming approach based on state-space-time network
representations. Transportation Research Part B: Methodological 89:19–42.

Nanry WP, Barnes JW, 2000 Solving the pickup and delivery problem with time windows using reactive tabu
search. Transportation Research Part B: Methodological 34(2):107–121.

Robbert AA, 2013 Costs of flying units in Air Force active and reserve components. Technical report, RAND
Corporation.

Ropke S, Cordeau JF, 2009 Branch and cut and price for the pickup and delivery problem with time windows.
Transportation Science 43(3):267–286.

Ropke S, Cordeau JF, Laporte G, 2007 Models and branch-and-cut algorithms for pickup and delivery prob-
lems with time windows. Networks 49(4):258–272.

Ropke S, Pisinger D, 2006 An adaptive large neighborhood search heuristic for the pickup and delivery problem
with time windows. Transportation Science 40(4):455–472.

Savelsbergh M, Sol M, 1998 Drive: Dynamic routing of independent vehicles. Operations Research 46(4):474–
490.

Savelsbergh MWP, Sol M, 1995 The general pickup and delivery problem. Transportation Science 29(1):17–29.

Sigurd M, Pisinger D, Sig M, 2004 Scheduling transportation of live animals to avoid the spread of diseases.
Transportation Science 38(2):197–209.

Toth P, Vigo D, 2014 Vehicle routing: Problems, methods, and applications, volume 18 (SIAM).

Vielma JP, 2015 Mixed integer linear programming formulation techniques. SIAM Review 57(1):3–57.

Vossen TWM, Hoffman R, Mukherjee A, 2012 Air traffic flow management. Barnhart C, Smith B, eds.,
Quantitative problem solving methods in the airline industry, 385–453 (Springer).

Xu H, Chen ZL, Rajagopal S, Arunapuram S, 2003 Solving a practical pickup and delivery problem. Trans-
portation Science 37(3):347–364.

