
Data, Models and Decisions for Large-Scale
Stochastic Optimization Problems

by

Velibor V. Mišić

B.A.Sc., University of Toronto (2010)
M.A.Sc., University of Toronto (2012)

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Sloan School of Management

May 10, 2016

Certified by. .
Dimitris Bertsimas

Boeing Professor of Operations Research
Co-Director, Operations Research Center

Thesis Supervisor

Accepted by .
Patrick Jaillet

Dugald C. Jackson Professor of Electrical Engineering
and Computer Science

Co-Director, Operations Research Center

2

Data, Models and Decisions for Large-Scale Stochastic

Optimization Problems

by

Velibor V. Mišić

Submitted to the Sloan School of Management
on May 10, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Operations Research

Abstract

Modern business decisions exceed human decision making ability: often, they are of
a large scale, their outcomes are uncertain, and they are made in multiple stages.
At the same time, firms have increasing access to data and models. Faced with such
complex decisions and increasing access to data and models, how do we transform
data and models into effective decisions? In this thesis, we address this question in
the context of four important problems: the dynamic control of large-scale stochastic
systems, the design of product lines under uncertainty, the selection of an assortment
from historical transaction data and the design of a personalized assortment policy
from data.

In the first chapter, we propose a new solution method for a general class of
Markov decision processes (MDPs) called decomposable MDPs. We propose a novel
linear optimization formulation that exploits the decomposable nature of the problem
data to obtain a heuristic for the true problem. We show that the formulation is
theoretically stronger than alternative proposals and provide numerical evidence for
its strength in multiarmed bandit problems.

In the second chapter, we consider to how to make strategic product line decisions
under uncertainty in the underlying choice model. We propose a method based on
robust optimization for addressing both parameter uncertainty and structural uncer-
tainty. We show using a real conjoint data set the benefits of our approach over the
traditional approach that assumes both the model structure and the model parame-
ters are known precisely.

In the third chapter, we propose a new two-step method for transforming lim-
ited customer transaction data into effective assortment decisions. The approach
involves estimating a ranking-based choice model by solving a large-scale linear op-
timization problem, and solving a mixed-integer optimization problem to obtain a
decision. Using synthetic data, we show that the approach is scalable, leads to ac-
curate predictions and effective decisions that outperform alternative parametric and
non-parametric approaches.

In the last chapter, we consider how to leverage auxiliary customer data to make

3

personalized assortment decisions. We develop a simple method based on recursive
partitioning that segments customers using their attributes and show that it improves
on a “uniform” approach that ignores auxiliary customer information.

Thesis Supervisor: Dimitris Bertsimas
Title: Boeing Professor of Operations Research
Co-Director, Operations Research Center

4

Acknowledgments

First, I want to thank my advisor, Dimitris Bertsimas, for his outstanding guidance

over the last four years. Dimitris: it has been a great joy to learn from you and to

experience your unbounded energy, love of research and positivity, which continue to

amaze me as much today as when we had our first research meeting. I am extremely

grateful and indebted to you for your commitment to my academic and personal

development and for all of the opportunities you have created for me. Most of all,

your belief in the power of research to have impact has always been inspiring to me,

and I shall carry it with me as I embark on the next chapter of my academic career.

I would also like to thank my committee members, Georgia Perakis and Retsef

Levi, for providing critical feedback on this research and for their support on the

academic job market. Georgia: thank you for your words of support, especially at a

crucial moment early in my final year, and for all of your help, especially with regard

to involving me in 15.099, providing multiple rounds of feedback on my job talk and

helping me prepare for pre-interviews at INFORMS. Retsef: thank you for pushing

me to be better, to think more critically of my work and for suggesting interesting

connections to other research.

I have also many other faculty and staff at the ORC to thank. Thank you to the

other faculty with whom I interacted and learned from during my PhD: thank you

Patrick Jaillet, Juan Pablo Vielma, David Gamarnik, Jim Orlin, Tauhid Zaman and

Karen Zheng. In addition, I must thank the ORC administrative staff, Laura Rose

and Andrew Carvalho, for making the ORC a paragon of efficiency and for always

having a solution to every administrative problem or question that I brought to them.

I would also like to acknowledge and thank my collaborators from MIT Lincoln

Laboratories for their support: Dan Griffith and Mykel Kochenderfer in the first two

years of my PhD, and Allison Chang in the last two years.

The ORC community has been a wonderful home for the last four years, and I

was extremely lucky to make many great friends during my time here. In particu-

lar, thank you to Anna Papush, Alex Remorov, Alex Sahyoun, Andrew Li, Charles

5

Thraves, Stefano Tracà, Alex Weinstein, Miles Lubin, Chiwei Yan, Matthieu Monsch,

Allison O’Hair, André Calmon, Gonzalo Romero, Florin Ciocan, Adam Elmachtoub,

Ross Anderson, Vishal Gupta, Phebe Vayanos, Angie King, Fernanda Bravo, Kris

Johnson, Maxime Cohen, Nathan Kallus, Will Ma, Nataly Youssef, David Fagnan,

John Silberholz, Paul Grigas, Iain Dunning, Leon Valdes, Martin Copenhaver, Daniel

Chen, Arthur Flajolet, Zach Owen, Joey Huchette, Nishanth Mundru, Ilias Zadik,

Colin Pawlowski and Rim Hariss. Andrew and Charlie: thank you for being there

from even before the beginning and for many epic nights. Anna, Alex R. and Charlie:

thank you for being the best project partners ever. Alex S., Alex W. and Anna: I

will never forget all the fun we had planning events as INFORMS officers. Vishal:

thank you for your mentorship during my first two years and for many insightful

conversations on research and life in general. Maxime and Paul: thank you for an

unforgettable trip to upstate New York (and please remember to not keep things

“complicated”)! Vishal, Maxime and Kris: thank you for your support during the job

market, especially in the last stage of the process. Nishanth: thank you for many cre-

ative meetings for the TRANSCOM project that often digressed into other research

discussions. Nataly: thank you for your encouragement in difficult times and also for

having plenty of embarrassing stories to share about me at social gatherings. Adam

and Ross: thank you for hosting me so many years ago and setting the right tone for

my ORC experience.

I also had many great teaching experiences at MIT, for which I have many people

to thank. Allison: thank you for being a fantastic instructor and coordinator, and

for your saint-like patience when I was a teaching assistant for the Analytics Edge in

its regular MBA, executive MBA and MOOC incarnations. Iain, John, Nataly and

Angie: thank you for being great teammates on the 15.071x MOOC.

Thank you to the Natural Sciences and Engineering Research Council (NSERC)

of Canada for providing financial support in the form of a PGS-D award for the first

three years of my PhD. Thank you also to Olivier Toubia, Duncan Simester and

John Hauser for making the data from their paper [91] available, which was used in

Chapter 3.

6

I had the great fortune of making an amazing group of Serbian friends in Cam-

bridge during my time at MIT. To Saša Misailović, Danilo Mandić 1, Marija Mirović,

Ivan Kuraj, Marija Simidjievska, Irena Stojkov, Enrico Cantoni, Miloš Cvetković, Aca

Milićević, Marko Stojković and Vanja Lazarević-Stojković: thank you for everything.

I will miss the brunches at Andala and the nights of rakija, palačinke, kiflice, the

immortal “Srbenda” meme, the incomprehensible arguments between Marija S. and

Kafka, and the MOST-sponsored Toscanini-induced ice cream comas.

I am also indebted to many friends outside of the ORC at MIT; a special thank

you to Felipe Rodríguez for being a wonderful roommate during the middle of my

PhD and to Francesco Lin for being a great party and concert buddy. Thank you

Peter Zhang and Kimia Ghobadi for many great get-togethers to relive our old glory

days at MIE (which reminds me: we still need to catch up!). Outside of MIT, thank

you Auyon Siddiq for being a great friend and for always helping me in my many

dilemmas, and thank you Birce Tezel for your words of reassurance in hard times

and for helping me bounce gift ideas off you. I also need to thank my friends from

my undergrad days in Toronto for being my biggest fans: thank you Eric Bradshaw,

Jordan DiCarlo, Geoffrey Vishloff, Lily Qiu, Torin Gillen, Emma Tsui, Oren Kraus,

Archis Deshpande and Anne Zhang. Thank you also to Konstantin Shestopaloff for

many great lunches and inspiring conversations during my visits back to Toronto.

I would not have reached this point without the support of my family: my father

Vojislav, my mother Jelena, my brother Bratislav and my sister-in-law Elena. Thank

you for your unwavering and unconditional love; words cannot express how grateful

I am to you for supporting me in my decision to come to MIT, for advising me in

complex and delicate situations, for always being on my team, for making me feel

better after particularly rough days and for visiting me in Cambridge many times

over the last four years. The best work in this thesis happened during my visits to

Toronto, when we would all be working on our own thing in the living room but

together, and I always look forward to our next discussion, whether it is about what

happened in the latest episode of Game of Thrones or Državni Posao, or Meda and

1Also known as “Kafka”.

7

Mačiko’s latest exploits. Which reminds me: I should also thank our quadrupedal

companions, Mačiko2 and Meda3, for their contributions to this thesis.

Last but not least, I would like to thank my girlfriend Dijana, for her love and

support, for being by my side at the lowest and the highest points of my PhD, for

always being positive and for reminding me that there is more to life than research,

such as getting brunch on a Sunday at Tatte or going for a run along the Charles

River. Above all, thank you for making the last couple of years the happiest of my

life. It is to her and my family that I dedicate this thesis.

2Also known as “Šmica”, “Dlakavo đubre”; a black cat of unknown provenance.
3Also known as “Kerenko”, “Keroslav”, “Kerenski”, “Skot”; a black lab-husky puppy. My walks

with him in -15∘ C Toronto weather led to some of the ideas in Chapter 4.

8

Contents

1 Introduction 19

1.1 Decomposable Markov decision processes: a fluid optimization approach 20

1.2 Robust product line design . 21

1.3 Data-driven assortment optimization 22

1.4 Personalized assortment planning via recursive partitioning 23

2 Decomposable Markov decision processes: a fluid optimization ap-

proach 25

2.1 Introduction . 25

2.2 Literature review . 30

2.3 Methodology . 34

2.3.1 Problem definition . 34

2.3.2 Fluid linear optimization formulation 35

2.3.3 Properties of the infinite fluid LO 37

2.3.4 Fluid-based heuristic . 39

2.4 Comparisons to other approaches . 43

2.4.1 Approximate linear optimization 43

2.4.2 Classical Lagrangian relaxation 44

2.4.3 Alternate Lagrangian relaxation 46

2.4.4 Comparison of bounds . 51

2.4.5 Comparison of formulation sizes 52

2.4.6 Disaggregating the ALO and the ALR 53

2.5 Application to multiarmed bandit problems 55

9

2.5.1 Problem definition . 55

2.5.2 Fluid model . 55

2.5.3 Relation to [19] . 56

2.5.4 Bound comparison . 59

2.5.5 Large scale bandit results . 61

2.6 Conclusion . 65

3 Robust product line design 69

3.1 Introduction . 69

3.2 Literature review . 73

3.3 Model . 77

3.3.1 Nominal model . 77

3.3.2 Robust model . 81

3.3.3 Choices of the uncertainty set 86

3.3.4 Trading off nominal and robust performance 90

3.4 Results . 91

3.4.1 Background . 93

3.4.2 Parameter robustness under the first-choice model 95

3.4.3 Parameter robustness under the LCMNL model 96

3.4.4 Parameter robustness under the HB-MMNL model 100

3.4.5 Structural robustness under different LCMNL models 103

3.4.6 Structural robustness under distinct models 105

3.5 Conclusion . 110

4 Data-driven assortment optimization 111

4.1 Introduction . 111

4.2 Literature review . 116

4.3 Assortment optimization . 121

4.3.1 Choice model . 121

4.3.2 Mixed-integer optimization model 123

4.4 Choice model estimation . 125

10

4.5 Computational results . 130

4.5.1 Tractability of assortment optimization model 131

4.5.2 Constrained assortment optimization 132

4.5.3 Estimation using column generation 138

4.5.4 Comparison of revenue predictions 141

4.5.5 Combining estimation and optimization 146

4.5.6 Comparison of combined estimation and optimization procedure 149

4.6 Conclusions . 153

5 Personalized assortment planning via recursive partitioning 155

5.1 Introduction . 155

5.2 Literature review . 157

5.3 Model . 160

5.3.1 Background . 160

5.3.2 Uniform assortment decisions 161

5.3.3 Personalized assortment decisions 161

5.4 The proposed method . 162

5.4.1 Data . 163

5.4.2 Building a customer-level model via recursive partitioning . . 164

5.5 Results . 167

5.6 Conclusion . 171

6 Conclusions 173

A Proofs, Counterexamples and Derivations for Chapter 2 175

A.1 Proofs . 175

A.1.1 Proof of Proposition 1 . 175

A.1.2 Proof of Proposition 2 . 176

A.1.3 Proof of Proposition 3 . 178

A.1.4 Proof of Theorem 1 . 178

A.1.5 Proof of Proposition 4 . 181

11

A.1.6 Proof of Theorem 2 . 185

A.1.7 Proof of Theorem 3 . 188

A.1.8 Proof of Theorem 4 . 189

A.1.9 Proof of Proposition 9 . 194

A.2 Counterexample to show that 𝑍*(s) ≤ 𝐽*(s) does not always hold . . 197

A.2.1 Bound . 197

A.2.2 Instance . 198

A.3 Derivation of alternate Lagrangian relaxation 199

12

List of Figures

3-1 Hypothetical illustration of revenue distributions under two different

product lines. 84

3-2 Plot of revenues under nominal and robust product lines under boot-

strapped LCMNL models with 𝐾 = 8. 98

3-3 Plot of approximate Pareto efficient frontier of solutions that trade-

off nominal revenue and worst-case revenue under the bootstrapped

uncertainty setℳ for 𝐾 = 8. 99

3-4 AIC for 𝐾 ∈ {1, . . . , 20}. 104

3-5 CAIC for 𝐾 ∈ {1, . . . , 20}. 104

3-6 First-choice product line, 𝑆N,𝑚FC . 107

3-7 LCMNL model with 𝐾 = 3 product line, 𝑆N,𝑚LC3 108

3-8 LCMNL model with 𝐾 = 12 product line, 𝑆N,𝑚LC12 108

3-9 Robust product line, 𝑆R. 108

3-10 Competitive products. 109

4-1 Evolution of training error and testing error with each column gener-

ation iteration for one MMNL instance with 𝑛 = 30, 𝑇 = 10, 𝐿 = 5.0

and 𝑀 = 20 training assortments. 142

4-2 Evolution of optimality gap with each column generation iteration for

one MMNL instance with 𝑛 = 30, 𝑇 = 10, 𝐿 = 5.0 and 𝑀 = 20

training assortments. 150

13

14

List of Tables

2.1 Comparison of sizes of formulations. (The number of constraints quoted

for each formulation does not count any nonnegativity constraints.) . 53

2.2 Objective value results (in %) for infinite horizon experiment, 𝑀 = 5,

𝑛 = 4, for instance 1 of sets REG.SAR and RSTLS.SAR. In each

instance, value of 𝛽 and metric, the best value is indicated in bold. . 62

2.3 Objective value results (in %) for infinite horizon experiment, 𝑀 = 5,

𝑛 = 4, for instance 1 of sets RSTLS.SBR and RSTLS.DET.SBR. In

each instance, value of 𝛽 and metric, the best value is indicated in bold. 63

2.4 Large scale policy performance and runtime simulation results for 𝑀 ∈

{5, 10}, 𝑛 ∈ {5, 10, 20} RSTLS.DET.SBR instances. (SE indicates

standard error.) . 66

2.5 Large scale policy performance and runtime simulation results for 𝛽 =

0.99, 𝑀 ∈ {15, 20}, 𝑛 ∈ {5, 10, 20} RSTLS.DET.SBR instances. (SE

indicates standard error.) . 67

3.1 Worst-case loss of nominal solution and relative improvement of robust

solution over nominal solution for varying values of 𝜖. 96

3.2 Comparison of nominal and worst-case revenues for LCMNL model

under bootstrapping for 𝐾 ∈ {1, . . . , 10}. 97

3.3 Comparison of solutions under nominal HB models 𝑚𝑃𝑜𝑖𝑛𝑡𝐸𝑠𝑡 and 𝑚𝑃𝑜𝑠𝑡𝐸𝑥𝑝

to robust solution under uncertainty set ℳ formed by posterior sam-

pling. 102

15

3.4 Comparison of nominal and worst-case revenues of product lines 𝑆N,3, . . . , 𝑆N,12.

105

3.5 Performance of nominal and robust product lines under the different

models inℳ as well as the worst-case model. 106

4.1 Results of tractability experiment. 133

4.2 Results of constrained optimization comparison. 137

4.3 Results of estimation procedure. 140

4.4 Results of estimation procedure as available data varies. 141

4.5 Results of estimation procedure as training MAE tolerance decreases.

Results correspond to MMNL(5.0, 10) instances with 𝑛 = 30 products

and 𝑀 = 20 training assortments. 142

4.6 Results of revenue prediction comparison for 𝑛 = 20 instances with

𝑀 = 20 training assortments. 144

4.7 Results of revenue prediction comparison between CG and MNL ap-

proaches for 𝑛 = 20 instances with 𝐿 = 100.0, 𝑇 ∈ {5, 10}, as number

of training assortments 𝑀 varies. 145

4.8 Results of combining the estimation and optimization procedures over

a wide range of MMNL models. 148

4.9 Results of combining the estimation and optimization procedures as

the amount of available data (the number of training assortments 𝑀)

varies. 149

4.10 Results of combining the estimation and optimization procedures as

training MAE tolerance varies. Results correspond to MMNL(5.0,10)

instances with 𝑛 = 30 products and 𝑀 = 20 training assortments. . 150

4.11 Results of comparison of combined estimation-optimization approaches

for 𝑛 = 20, MMNL(·, ·) instances. 152

4.12 Results of optimality gap comparison between MNL and CG+MIO

approaches as number of training assortments 𝑀 varies, for 𝑛 = 20,

MMNL instances with 𝐿 = 100.0 and 𝑇 ∈ {5, 10}. 153

16

5.1 Transaction data in example data set. 164

5.2 Results for 𝑛 = 10, 𝑀 = 5. (“Rev” indicates the out-of-sample revenue;

“Gap” indicates the gap metric 𝐺.) 170

17

18

Chapter 1

Introduction

Modern business decisions exhibit an unprecedented level of complexity. Consider

the following examples:

∙ Given a set of projects evolving stochastically, how should we dynamically al-

locate our firm’s resources to these projects to maximize the long term benefit

to the firm?

∙ What variations of a new product should we offer to a customer population?

∙ How should we modify our product offerings to maximize revenues given aggre-

gated transaction data from a collection of customers?

∙ In an online retail setting, how do we leverage information about our customers

to tailor our product offerings to each individual customer?

These decisions, and many other decisions like these ones, are extremely complex.

Often, the system that provides the context for our decision is one that is high-

dimensional; that exhibits known, stochastic dynamics or otherwise, unknown dy-

namics that lead to uncertainty in our decision; and ones that evolve over multiple

stages in time, requiring us to make not a single, one-shot decision, but a sequence of

decisions. Such decisions exceed human decision making ability; managerial intuition

and insight cannot be relied on as the sole basis for such decisions.

19

At the same time, businesses have increasing access to data and models that

allow them to understand the effects of different decisions. For example, in the case

of product line decisions, firms increasingly rely on a technique known as conjoint

analysis to survey customers, which involves asking representative customers to choose

from hypothetical products. Using this data on their choices, the firm can then build

models to predict how customers will choose from hypothetical product offerings.

However, despite this increasing access to data and models, firms lack the capa-

bility to bridge the chasm between data/models and effective decisions. This is what

the burgeoning field of analytics is concerned: how to transform data and predictive

models into decisions that create value.

This thesis is concerned with developing new analytics methods for making com-

plex decisions in the presence of either data or models that describe the system. These

methods are largely based on modern optimization, more specifically, linear, mixed-

integer and robust optimization. In what follows, we provide a high-level overview of

each chapter of the thesis. A more extensive discussion of the contributions and the

relevant literature can be found at the beginning of each chapter.

1.1 Decomposable Markov decision processes: a fluid

optimization approach

In Chapter 2, we consider the problem of solving decomposable Markov decision

processes (MDPs). Decomposable MDPs are problems where the stochastic system

can be decomposed into multiple individual components. Although such MDPs arise

naturally in many practical applications, they are often difficult to solve exactly

due to the enormous size of the state space of the complete system, which grows

exponentially with the number of components.

In this chapter, we propose an approximate solution approach to decomposable

MDPs that is based on re-solving a fluid linear optimization formulation of the prob-

lem at each decision epoch. This formulation tractably approximates the problem by

20

modeling transition behavior at the level of the individual components rather than

the complete system. We prove that our fluid formulation provides a tighter bound on

the optimal value function than three state-of-the-art formulations: the approximate

linear optimization formulation, the classical Lagrangian relaxation formulation and a

novel, alternate Lagrangian relaxation that is based on relaxing an action consistency

constraint. We provide a numerical demonstration of the effectiveness of the approach

in the area of multiarmed bandit problems, where we show that our approach provides

near optimal performance and outperforms state-of-the-art algorithms.

1.2 Robust product line design

In Chapter 3, we consider the problem of designing product lines that are immunized

to uncertainty in customer choice behavior. The majority of approaches to product

line design that have been proposed by marketing scientists assume that the under-

lying choice model that describes how the customer population will respond to a new

product line is known precisely. In reality, however, marketers do not precisely know

how the customer population will respond and can only obtain an estimate of the

choice model from limited conjoint data.

In this chapter, we propose a new type of optimization approach for product

line design under uncertainty. Our approach is based on the paradigm of robust

optimization where, rather than optimizing the expected revenue with respect to

a single model, one optimizes the worst-case expected revenue with respect to an

uncertainty set of models. This framework allows us to account for both parameter

uncertainty, when we may be confident about the type of model structure but not

about the values of the parameters, and structural uncertainty, when we may not

even be confident about the right model structure to use to describe the customer

population.

Through computational experiments with a real conjoint data set, we demonstrate

the benefits of our approach in addressing parameter and structural uncertainty. With

regard to parameter uncertainty, we show that product lines designed without ac-

21

counting for parameter uncertainty are fragile and can experience worst-case revenue

losses as high as 23%, and that the robust product line can significantly outperform

the nominal product line in the worst-case, with relative improvements of up to 14%.

With regard to structural uncertainty, we similarly show that product lines that are

designed for a single model structure can be highly suboptimal under other structures

(worst-case losses of up to 37%), while a product line that optimizes against the worst

of a set of structurally distinct models can outperform single-model product lines by

as much as 55% in the worst-case and can guarantee good aggregate performance

over structurally distinct models.

1.3 Data-driven assortment optimization

In Chapter 4, we consider the problem of assortment optimization using historical

transaction data from previous assortments. Assortment optimization refers to the

problem of selecting a set of products to offer to a group of customers so as to

maximize the revenue that is realized when customers make purchases according to

their preferences. Assortment optimization is essential to a wide variety of application

domains that includes retail, online advertising and social security; however, it is

challenging in practice because one typically has limited data on customer choices on

which to base the decision.

In this chapter, we present a two-step approach to making effective assortment

decisions from transaction data. In the first step, we use the data to estimate a generic

ranking-based model of choice that is able to represent any choice model based on

random utility maximization. In the second step, using the estimated model, we find

the optimal assortment by solving a mixed-integer optimization (MIO) problem that

is scalable and that is flexible, in that it can easily accommodate constraints.

We show through computational experiments with synthetic data that (1) our

MIO model is practically tractable and can be solved to full optimality for large

numbers of products in operationally feasible times; (2) our MIO model is able to

accommodate realistic constraints with little impact to solution time; (3) our esti-

22

mation procedure is computationally efficient and produces accurate out-of-sample

predictions of the true choice probabilities; and (4) by combining our estimation and

optimization procedures, we are able to find assortments that achieve near-optimal

revenues that outperform alternative parametric and non-parametric approaches.

1.4 Personalized assortment planning via recursive

partitioning

In Chapter 5, we consider the problem of making personalized assortment decisions

using data. Previously, in Chapter 4, we considered the problem of how to make an

assortment decision using historical data that only focuses on previous assortments

and previous purchases, and does not assume that there is data about the customers

who make those purchase decisions. In an increasing number of real-world assortment

contexts, we have access to information about a customer. For example, in an online

retail setting, we know information about the user browsing through the product

offerings, such as their location (through their ZIP code for example), age, gender and

many other attributes. Given this information, how can we leverage this information

to make a more effective assortment decision for each individual customer?

In this chapter, we present an approach for using auxiliary customer data to

make better assortment decisions. The approach is based on building a predictive

model using recursive partitioning: the customers represented in the transactions are

iteratively divided up according to their attributes, and the end result is a tree repre-

sentation of the customers, where each leaf corresponds to a collection of customers

that share similar attributes and whose choice behavior is sufficiently homogeneous.

In a way, this tree can be thought of as a segmentation of the customers.

Using synthetic data, we compare our partitioning-based approach to a uniform

approach, which offers the same assortment to all customers and ignores the cus-

tomer attribute data, and to a “perfect foresight” approach, which knows the ground

truth model perfectly and optimizes exactly for that model. We show that our ap-

23

proach leads to out-of-sample revenues that improve on the uniform approach, and

are moderately close to revenues obtained with perfect foresight.

24

Chapter 2

Decomposable Markov decision

processes: a fluid optimization

approach

2.1 Introduction

Many real world problems involving the control of a stochastic system can be modeled

as Markov decision processes (MDPs). In a typical MDP, the system begins in a

certain state s in some state space 𝒮. The decision maker selects an action 𝑎 from

some action space 𝒜. The system then transitions randomly to a new state s′ with

probability 𝑝𝑎(s, s
′) and the decision maker garners some reward 𝑔𝑎(s). Once the

system is in this new state s′, the decision maker once again selects a new action,

leading to additional reward and causing the system to transition again. In the

most basic form of the problem, the decision maker needs to make decisions over an

infinite horizon, and the rewards accrued over this infinite horizon are discounted in

time according to a discount factor 𝛽 ∈ (0, 1). The goal of the decision maker, then,

is to find a policy 𝜋 that prescribes an action 𝜋(s) for each state s so as to maximize

25

the expected total discounted reward

E

[︃
∞∑︁
𝑡=1

𝛽𝑡−1𝑔𝜋(s(𝑡))(s(𝑡))

]︃
,

where s(𝑡) is the random variable representing the state at time 𝑡, when the system is

operated according to policy 𝜋. In other types of problems, the decision maker may

only be making decisions over a finite time horizon; in those problems, the policy

prescribing the action to take may not only depend on the state, but also on the time

at which the decision is being made.

Although problems that are represented in this form can in principle be solved ex-

actly with dynamic programming, this is often practically impossible. Exact methods

based on dynamic programming require one to compute the optimal value function

𝐽*, which maps states in the state space 𝒮 to the optimal expected discounted reward

when the system starts in that state. For many problems of practical interest, the

state space 𝒮 is so large that operating on, or even storing the value function 𝐽*,

becomes computationally infeasible. This is what is often referred to in the dynamic

programming and MDP literature as the curse of dimensionality [8].

Where does the curse of dimensionality come from? That is, why is it that practi-

cal MDPs often have prohibitively large state spaces? For many practical problems,

the system that is being modeled is often not a single, atomic system, but rather con-

sists of a collection of smaller sub-systems or components. Mathematically, consider

a system consisting of 𝑀 components, where each component 𝑚 ∈ {1, . . . ,𝑀} is

endowed with a state 𝑠𝑚 from an ambient state space 𝒮𝑚. To represent the complete

system, we must represent the state s as an 𝑀 -tuple of the component states, i.e.,

s = (𝑠1, . . . , 𝑠𝑀), and as a result, the state space of the complete system becomes the

Cartesian product of the component state spaces, i.e., 𝒮 = 𝒮1 × · · · × 𝒮𝑀 . As the

number of components 𝑀 grows, the size of the state space of the complete system

grows in an exponential fashion.

At the same time, the data of such systems are often not presented to us in

terms of the complete system state. The probabilistic dynamics induced by each

26

candidate action in 𝒜 may be naturally expressed in terms of individual components

or small combinations (e.g., pairs) of components. Similarly, the reward structure of

the problem does not need to be specified in terms of the complete system state, but

can be specified in terms of the component states. In the remainder of the chapter,

we will refer to MDPs where the probabilistic dynamics and reward structure can be

expressed in terms of the component states as decomposable MDPs.

Many practically relevant MDPs can be modeled as decomposable MDPs. One

major class of MDPs that falls into the decomposable MDP framework is the class of

multiarmed bandit problems. In the multiarmed bandit problem, the decision maker

is presented with 𝑀 machines (“bandits”), where each bandit 𝑚 is initially in some

state 𝑠𝑚 from its state space 𝒮𝑚. At each point in time, one of the bandits may

be activated, in which case the chosen bandit changes state probabilistically and the

decision maker earns some reward. The problem is then to decide, at each point in

time, given the state of all of the bandits, which bandit to activate, so as to maximize

the total expected long term reward. In the basic form of the problem – the regular

multiarmed bandit problem – when a bandit 𝑚 is activated, the inactive bandits do

not change state. In the restless bandit problem, the inactive bandits can also change

state passively and the decision maker may earn a passive reward from bandits that

are not activated. The multiarmed bandit, by its definition, is a decomposable MDP:

the state space of the ensemble of bandits is the product of the state spaces of the

individual bandits, and the probability transition structure is specified at the level of

each bandit.

In this chapter, we propose a new fluid optimization approach for approximately

solving decomposable MDPs. The centerpiece of our approach is a linear optimization

(LO) model in which, in its most basic form, the decision variables represent the

marginal probabilities of each individual component being in each of its possible states

and the action taken at a particular time, and the main constraints are conservation

constraints that govern how these marginal probabilities “flow” from component states

at time 𝑡 to new states at 𝑡 + 1 under different action (hence the name fluid). The

idea of the formulation is to approximate the behavior of the system when it is

27

controlled optimally. The formulation achieves this in a tractable way by exploiting

the decomposable nature of the problem: rather than modeling the precise transition

behavior of the system at the level of tuples of component states, it models the

macroscopic transitions of the system at the level of the individual components and

their states. The optimal solution of the formulation, when it includes constraints

that model the complete system starting in a certain state, can be used to derive an

action for the state. In this way, the formulation leads naturally to a simple heuristic

for solving the MDP.

Our contributions are as follows:

1. We propose a novel LO formulation for approximately modeling decomposable

MDPs and an associated heuristic for solving the MDP. The formulation is

tractable since the number of variables scales linearly with the number of indi-

vidual components, as opposed to the exponential scaling that is characteristic

of dynamic programming. We show that this formulation provides an upper

bound on the optimal value of the MDP and provide idealized conditions under

which our fluid formulation-based heuristic is optimal. We discuss how this

basic, “first-order” formulation that models individual components can be ex-

tended to “higher-order” formulations that model combinations of components

(e.g., a second-order formulation that models transitions of pairs of compo-

nents). We also discuss how the basic formulation can be extended to address

finite horizon, time-dependent problems.

2. We theoretically compare our fluid formulation to three alternative proposals.

In particular, we show that a finite version of our formulation that models the

evolution of the system over a horizon of 𝑇 periods provides provably tighter

bounds on the optimal value function than three state-of-the-art formulations:

the approximate linear optimization (ALO) formulation of [38], the classical

Lagrangian relaxation (CLR) formulation of [2] and an alternate Lagrangian

relaxation (ALR) that involves relaxing an action consistency constraint. The

latter alternate Lagrangian relaxation is a novel formulation that is equivalent

28

to the ALO and is of independent interest. Moreover, the fluid bound is non-

increasing with the time horizon 𝑇 . Letting 𝐽*(s) denote the optimal value

function at the state s, 𝑍*
𝑇 (s) denote the objective value of the fluid formulation

with horizon 𝑇 at s, and 𝑍*
𝐴𝐿𝑂(s), 𝑍*

𝐴𝐿𝑅(s),and 𝑍*
𝐶𝐿𝑅(s) denote the objective

values of the ALO, ALR and CLR formulations at s, respectively, our results can

be summarized in the following statement, which holds for any 𝑇 ∈ {1, 2, . . . }:

𝐽*(s) ≤ 𝑍*
𝑇 (s) ≤ . . . ≤ 𝑍*

2(s) ≤ 𝑍*
1(s) ≤ 𝑍*

𝐴𝐿𝑂(s) = 𝑍*
𝐴𝐿𝑅(s) ≤ 𝑍*

𝐶𝐿𝑅(s).

In this way, our work contributes to the overall understanding of the fluid ap-

proach and all previous proposals in a unified framework.

3. We demonstrate the effectiveness of our approach computationally on multi-

armed bandit problems. We consider regular bandit problems (inactive bandits

do not change state) and restless bandit problems (inactive bandits may change

state). We show that bounds from our approach can be substantially tighter

than those from state-of-the-art approaches, and that the performance of our

fluid policy is near-optimal and outperforms policies from state-of-the-art ap-

proaches.

The rest of this chapter is organized as follows. In Section 2.2, we review the

extant body of research related to this chapter. In Section 2.3, we define the decom-

posable MDP and present our infinite LO fluid formulation. We prove a number of

properties of this formulation, and motivated by the properties of this infinite LO for-

mulation, we present a heuristic policy for generating actions at each decision epoch

based on a finite version of this formulation. In Section 2.4, we compare the finite

fluid formulation to the ALO formulation of [38], the classical Lagrangian relaxation

approach of [2] and the alternate Lagrangian relaxation. In Section 2.5, we apply our

framework to the multiarmed bandit problem and provide computational evidence

for the strength of our approach in this class of problems. Finally, in Section 2.6, we

state the conclusions of our study and offer some directions for future work.

29

2.2 Literature review

Markov decision processes have a long history, tracing back to the work of [7] in the

1950s. The importance and significance of this area in the field of operations research

is underscored both by the number of research papers that have been written in this

area, as well as the numerous books written on the subject [60, 59, 75, 12].

While MDPs can be solved exactly through methods such as value iteration, policy

iteration and the LO approach (see, e.g., [75]), these approaches become intractable

in high-dimensional problems. As a result, much research has been conducted in the

area of approximate dynamic programming (ADP). The interested reader is referred

to [94] for a brief overview, and to [13] and [74] for more comprehensive treatments

of the topic. The goal of ADP is to find an approximation to the true value function.

By then applying the policy that is greedy with respect to this approximate value

function, one hopes to achieve performance that is close to that of the true optimal

policy.

Within the ADP literature, our work is most closely related to the approximate

linear optimization (ALO) approach of [38] and the Lagrangian relaxation approach

of [2]. In the ALO approach to ADP, one approximates the value function as the

weighted sum of a collection of basis functions, and solves the LO formulation of the

MDP with this approximate value function in place of the true value function. By

doing so, the number of variables in the problem is significantly reduced, leading to

a more tractable problem. In many applications, one can exploit the decomposable

nature of the problem in selecting a basis function architecture: for example, in [38]

the approach is applied to a queueing control example, where the value function is

approximated as a linear combination of all polynomials up to degree 2 of the indi-

vidual queue lengths of the system. On the other hand, [58] and [2] study MDPs

where the problem can be viewed as a collection of subproblems, and the action that

can be taken in each subproblem is constrained by a global linking constraint that

couples the subproblems together. By dualizing the linking constraint, the complete

problem decomposes along the subproblems, leading to an optimization problem that

30

is significantly simpler than the exact LO model of the MDP. By solving this opti-

mization problem, one obtains an upper bound on the optimal value at a given state

and a value function approximation.

Our fluid approach is closely related to the Lagrangian relaxation approach and

builds on it in two important ways. First, we delineate two different types of La-

grangian relaxations: the “classical” Lagrangian relaxation, where the action space

is implicitly defined by a coupling constraint, and a novel, “alternate” Lagrangian

relaxation where the components are coupled by an “action consistency” constraint

(the action taken in each component must be the same). Our formulation is not

related to the former classical formulation, but to the latter alternate formulation.

This alternate Lagrangian relaxation is significant because it extends the scope of the

Lagrangian relaxation approach to problems that do not have a decomposable system

action space. Furthermore, it turns out that this alternate Lagrangian relaxation is

actually equivalent to the ALO: the two models lead to the same bound on the true

optimal value function and the same value function approximation (Theorem 2). In

contrast, for the classical Lagrangian relaxation, one can only show that the ALO

bound is at least as tight [2] and one can find simple examples where the Lagrangian

bound can be significantly worse than the ALO bound.

The second way in which our approach builds on the Lagrangian relaxation ap-

proach is through its view of time. Our formulation first models the state of each

component separately at each decision epoch over a finite horizon before aggregating

them over the remaining infinite horizon, whereas the formulation of [2] aggregates

them over the entire infinite horizon. While this may appear to be a superficial dif-

ference, it turns out to be rather significant because it allows us to prove that the

fluid bound is at least as tight as the classical and alternate Lagrangian relaxation

bounds (parts (a) and (c) of Theorem 3). As we will see in Section 2.5, the difference

in the bounds and the associated performance can be considerable.

With regard to the ALO, the ALO and our fluid model differ in tractability. In

particular, the size (number of variables and number of constraints) of our fluid model

scales linearly in the number of components and actions. In contrast, in the ALO,

31

while the number of variables may scale linearly in the number of components, the

number of constraints still scales linearly with the number of system states, as in the

exact LO model of the MDP. This necessitates the use of additional techniques to

solve the problem, such as constraint sampling [39]. Moreover, as stated above, it

turns out that when one uses a component-wise approximation architecture for the

ALO, it is equivalent to the alternate Lagrangian relaxation formulation described

above. Due to this equivalence, we are able to assert that our fluid model leads

to better bounds than the ALO, and through our numerical results, that our fluid

approach leads to better performance than the ALO approach.

Outside of ADP, many approximate approaches to stochastic control problems

also exploit decomposability. One salient example of this is the performance region

approach to stochastic scheduling. In this approach, one considers a vector of per-

formance measures of the complete system (for an overview, [14]). Using the proba-

bilistic dynamics of the system, one can then derive conservation laws that constrain

the values this vector of performance measures may take. The resulting set is the

performance region of the system, over which one can solve an optimization problem

to find the best vector of performance measures. It turns out that typically this vector

of performance measures is achieved by simple policies or a randomization of simple

policies. This approach was introduced by [35] for multi-class scheduling in a single-

server 𝑀/𝑀/1 queue and later extended by [45] and [88] to more general queueing

systems. [18] unified this framework and extended it beyond queueing control prob-

lems to such problems as the multiarmed bandit problem and branching bandits. [19]

later considered a performance region formulation for the restless bandit problem and

used it to derive a high quality heuristic for the restless bandit problem.

Our approach has some conceptual similarities to the performance region approach

in the sense that one defines decision variables related to the proportion of time that

components of the system are in certain states, imposes constraints that conserve

these proportions with each transition and optimizes an objective over the resulting

feasible set. In spite of these commonalities, there are a number of key differences.

Many existing performance region formulations, due to the nature of the stochastic

32

system, possess attractive computational and theoretical properties. For example,

for systems that satisfy generalized conservation laws, the performance region is an

extended polymatroid or contra-polymatroid and so a linear function can be optimized

rapidly using a greedy algorithm, and the extreme points of the performance region

correspond to deterministic priority rules [18]. In contrast, our formulation does

not appear to possess such special computational structure and, as we discuss in

Section 2.3.3, optimal solutions of our fluid formulation may in general not be achieved

by any policy, let alone a specific class of policies. At the same time, many extant

performance region approaches are fragile, in that they exploit non-trivial properties

of the underlying stochastic system and thus cannot be immediately extended to

even simple generalizations. An example of this is the formulation of the multiarmed

bandit problem in [18], which exploits specific conservation properties of the regular

multiarmed bandit problem and cannot be extended to restless bandits, necessitating

the authors’ exploration of an alternate approach in [19]. In contrast, our formulation

is insensitive to these types of differences; it does not use any structure of the problem

beyond the transition probabilities of individual components or groups of components.

Within the performance region literature, our fluid formulation of the restless ban-

dit problem is similar to the performance region model of [19]. This model is actually

equivalent to both the classical and the alternate Lagrangian relaxation formulations

(Propositions 8 and 9). As a result, our comparison of the fluid formulation with

the Lagrangian relaxation formulations allows us to assert that our approach leads to

tighter state-wise bounds than the performance region formulation. Moreover, as we

will see in Section 2.5.5, our fluid approach significantly outperforms the associated

primal dual heuristic of [19].

The first fluid formulation that we will propose in Section 2.3.2 is a countably

infinite LO (CILO) problem. There exists a rich literature on this class of problems

(see, e.g., [5]). Within this area, the work of [50] and [68] directly studies MDPs;

however, both of these papers specifically study nonstationary problems and do not

additionally consider decomposability. Although we do not explore the application of

the methods and theory from the CILO literature to our setting, we believe that it is

33

an interesting direction for future research.

Lastly, the alternate Lagrangian relaxation we will develop in Section 2.4 arises

by relaxing a certain type of action consistency constraint that requires that the

action taken in any two components be equivalent. This bears some resemblance to

the technique of “variable splitting” or “operator splitting” that is used in continuous

optimization (see, for example, [27, 52] and the references therein). The exploration of

the connections of the alternate Lagrangian relaxation to splitting-based formulations

is an interesting direction for future research.

2.3 Methodology

We begin in Section 2.3.1 by defining a general decomposable, infinite horizon MDP.

We then present an infinite LO formulation that is related to this MDP in Sec-

tion 2.3.2. In Section 2.3.3, we prove some interesting properties of the formulation,

and motivated by one of these properties, propose a solvable finite LO formulation

and an associated heuristic in Section 2.3.4. The proofs of all theoretical results are

provided in Appendix A.1.

2.3.1 Problem definition

In this section, we define the decomposable MDP for which we will subsequently

develop our fluid approach.

Let 𝒮 be the state space of the complete system, and assume that the complete

system state decomposes into 𝑀 components, so that the complete system state space

can be written as 𝒮 = 𝒮1 × · · · × 𝒮𝑀 . Let 𝒜 be a finite action space, and assume

that any action in 𝒜 can be taken at any state in 𝒮. We make this assumption

for simplicity; our approach can be extended to accommodate component-dependent

constraints that restrict which actions can be action when specific components enter

specific states (for example, an action 𝑎 cannot be taken when component 𝑚 is in

state 𝑘). Let s(𝑡) be the random variable that represents the state of the complete

system at time 𝑡, and let 𝑠𝑚(𝑡) denote the state of component 𝑚 of the system, so

34

that s(𝑡) = (𝑠1(𝑡), . . . , 𝑠𝑀(𝑡)). Let 𝜋 : {1, 2, . . . } × 𝒮 → 𝒜 be the policy under which

the system is operating, which maps a state s(𝑡) at time 𝑡 to an action 𝜋(𝑡, s(𝑡)) in

𝒜. Let 𝑝𝑎(s, s̄) be the probability of the complete system transitioning from state s

to state s̄ in one step when action 𝑎 ∈ 𝒜 is taken, i.e.,

𝑝𝑎(s, s̄) = P (s(𝑡 + 1) = s̄ s(𝑡) = s, 𝜋(𝑡, s(𝑡)) = 𝑎)

for all 𝑡 ∈ {1, 2, . . . }. Let 𝑝𝑚𝑘𝑗𝑎 denote the probability of component 𝑚 transitioning

from state 𝑘 to state 𝑗 in one step when action 𝑎 ∈ 𝒜 is taken, i.e.,

𝑝𝑚𝑘𝑗𝑎 = P(𝑠𝑚(𝑡 + 1) = 𝑗 𝑠𝑚(𝑡) = 𝑘, 𝜋(𝑡, s(𝑡)) = 𝑎),

for all 𝑡 ∈ {1, 2, . . . }. We assume that the components are independent, so that

𝑝𝑎(s, s̄) can be written compactly as

𝑝𝑎(s, s̄) =
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎.

Let 𝑔𝑎(s) be the reward associated with taking action 𝑎 when the system is in

state s, and assume that it is additive in the components, that is, it can be written

as

𝑔𝑎(s) =
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚𝑎,

where 𝑔𝑚𝑘𝑎 is the reward associated with taking action 𝑎 when component 𝑚 is in state

𝑘. Assume that the system starts in state s = (𝑠1, . . . , 𝑠𝑀). The problem is then to

find a policy 𝜋 that maximizes the expected total discounted reward:

max
𝜋

E

[︃
∞∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝛽𝑡−1𝑔𝑚𝑠𝑚(𝑡),𝜋(𝑡,s(𝑡)) s(1) = s

]︃
. (2.1)

2.3.2 Fluid linear optimization formulation

We now consider a fluid formulation of problem (2.1). We begin by defining, for

each 𝑡 ∈ {1, 2, 3 . . . }, the decision variable 𝑥𝑚
𝑘𝑎(𝑡) to be the proportion of time that

35

component 𝑚 ∈ {1, . . . ,𝑀} is in state 𝑘 ∈ 𝒮𝑚 and action 𝑎 ∈ 𝒜 is taken at time 𝑡. For

every 𝑡 ∈ {1, 2, 3, . . . }, we also define the decision variable 𝐴𝑎(𝑡) to be the proportion

of time that action 𝑎 ∈ 𝒜 is taken at time 𝑡. As stated in Section 2.3.1, our data

are the discount factor 𝛽, the reward 𝑔𝑚𝑘𝑎 (the reward accrued by the decision maker

when component 𝑚 is in state 𝑘 and action 𝑎 is taken) and the transition probability

𝑝𝑚𝑘𝑗𝑎 (the probability that component 𝑚 transitions from state 𝑘 to state 𝑗 in one step

when action 𝑎 is taken).

Finally, we assume that the system starts deterministically in a state s ∈ 𝒮. For

convenience, we will define 𝛼𝑚
𝑘 (s) as

𝛼𝑚
𝑘 (s) =

⎧⎨⎩ 1, if 𝑠𝑚 = 𝑘,

0, otherwise.

The fluid problem for initial state s can now be formulated as follows:

maximize
x,A

∞∑︁
𝑡=1

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑡−1 · 𝑔𝑚𝑘𝑎 · 𝑥𝑚
𝑘𝑎(𝑡) (2.2a)

subject to
∑︁
𝑎∈𝒜

𝑥𝑚
𝑗𝑎(𝑡) =

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎̃∈𝒜

𝑝𝑚𝑘𝑗𝑎̃𝑥
𝑚
𝑘𝑎̃(𝑡− 1),

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑡 ∈ {2, 3, . . . }, 𝑗 ∈ 𝒮𝑚, (2.2b)∑︁
𝑘∈𝒮𝑚

𝑥𝑚
𝑘𝑎(𝑡) = 𝐴𝑎(𝑡), ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑎 ∈ 𝒜, 𝑡 ∈ {1, 2, . . . },

(2.2c)∑︁
𝑎∈𝒜

𝑥𝑚
𝑘𝑎(1) = 𝛼𝑚

𝑘 (s), ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, (2.2d)

𝑥𝑚
𝑘𝑎(𝑡) ≥ 0, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑎 ∈ 𝒜, 𝑘 ∈ 𝒮𝑚, 𝑡 ∈ {1, 2, . . . },

(2.2e)

𝐴𝑎(𝑡) ≥ 0, ∀ 𝑎 ∈ 𝒜, 𝑡 ∈ {1, 2, . . . }. (2.2f)

Constraint (2.2b) ensures that probability is conserved from time 𝑡 − 1 to time 𝑡:

the left hand side represents the proportion of time that component 𝑚 is in state 𝑗

at time 𝑡 in terms of the 𝑥𝑚
𝑗𝑎(𝑡) variables, while the right hand side represents the

36

same proportion, only in terms of the 𝑥𝑚
𝑘𝑎̃(𝑡− 1) variables, which correspond to time

𝑡 − 1. Constraint (2.2c) ensures that, for each component, the proportion of time

that action 𝑎 is taken in terms of the 𝑥𝑚
𝑘𝑎(𝑡) variables is equal to 𝐴𝑎(𝑡) (which is

precisely defined as the proportion of time that action 𝑎 is taken at time 𝑡). Thus,

the actions 𝑎 ∈ 𝒜 connect the variables corresponding to the different components.

Constraint (2.2d) ensures that the initial frequency with which each component 𝑚 is

in a state 𝑘 is exactly 𝛼𝑚
𝑘 (s). The remaining two constraints (2.2e) and (2.2f) ensure

that all of the decision variables are nonnegative, as they represent proportions. Given

the definition of 𝑥𝑚
𝑘𝑎(𝑡) as the proportion of time that component 𝑚 is in state 𝑘 at

time 𝑡 and action 𝑎 is taken at time 𝑡, the objective can therefore be interpreted as

the expected discounted long term reward.

Note that constraints (2.2b) and (2.2d), together with the fact that
∑︀

𝑗∈𝒮𝑚 𝑝𝑚𝑘𝑗𝑎 = 1

for any 𝑚, 𝑘 and 𝑎, imply that
∑︀

𝑘∈𝒮𝑚

∑︀
𝑎∈𝒜 𝑥𝑚

𝑘𝑎(𝑡) = 1 for each 𝑚 and 𝑡. Together

with constraint (2.2c), this also implies that
∑︀

𝑎∈𝒜𝐴𝑎(𝑡) = 1 for each 𝑡.

The following result, which follows by standard arguments in infinite dimensional

linear optimization (see Section A.1.1 in Appendix A), establishes that the infinite

horizon problem (2.2) is well-defined.

Proposition 1 For each s ∈ 𝒮, problem (2.2) has an optimal solution.

2.3.3 Properties of the infinite fluid LO

We will now develop some theoretical properties of the fluid LO model. Let (x(s),A(s))

and 𝑍*(s) denote an optimal solution and the optimal objective value, respectively,

to problem (2.2) corresponding to initial state s. Denote by 𝐽*(·) the optimal value

function obtained using dynamic programming, that is,

𝐽*(s) = max
𝜋

E

[︃
∞∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝛽𝑡−1𝑔𝑚𝑠𝑚(𝑡),𝜋(𝑡,s(𝑡)) s(1) = s

]︃

for every s ∈ 𝒮. We then have the following relationship between problem (2.2) and

the optimal value function, whose proof appears as Section A.1.2 in Appendix A.

37

Proposition 2 For every s ∈ 𝒮, 𝐽*(s) ≤ 𝑍*(s).

The idea behind the proof of Proposition 2, is that by using an optimal policy 𝜋*,

it is possible to construct a feasible solution (x,A) to problem (2.2) whose objective

value is the true optimal value 𝐽*(s). Unfortunately, the opposite inequality does not

hold in general; see Appendix A.2 counterexample. Let us call the optimal solution

(x(s),A(s)) achievable if there exists a (possibly non-deterministic and time-varying)

policy 𝜋 such that

𝑥𝑚
𝑘𝑎(𝑡, s) = P(𝑠𝑚(𝑡) = 𝑘, 𝜋(𝑡, s(𝑡)) = 𝑎), ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚,

𝑎 ∈ 𝒜, 𝑡 ∈ {1, 2, . . . },

𝐴𝑎(𝑡, s) = P(𝜋(𝑡, s(𝑡)) = 𝑎), ∀ 𝑎 ∈ 𝒜, 𝑡 ∈ {1, 2, . . . },

where s(𝑡) is the state of the complete system stochastic process at time 𝑡, operated

according to 𝜋, starting from s (i.e., s(1) = s). (Note that we use 𝑥𝑚
𝑘𝑎(𝑡, s) and

𝐴𝑎(𝑡, s) to denote the optimal value of 𝑥𝑚
𝑘𝑎(𝑡) and 𝐴𝑎(𝑡) in the solution (x(s),A(s))

that corresponds to initial state s.) Under the assumption of achievability, we have

the following result.

Proposition 3 Let s ∈ 𝒮. If (x(s),A(s)) is achievable, then 𝑍*(s) ≤ 𝐽*(s).

The proof is contained Section A.1.3 of Appendix A. The result follows since, under

the assumption of achievability, 𝑍*(s) is the total expected discounted reward of some

policy, while 𝐽*(s) is the highest any such reward can be.

Under the assumptions of component independence and achievability, the fluid

formulation allows us to construct an optimal policy.

Theorem 1 Suppose that for all s ∈ 𝒮, (x(s),A(s)) is achievable. Define the deter-

ministic, stationary policy 𝜋 : 𝒮 → 𝒜 as

𝜋(s) = arg max
𝑎∈𝒜

𝐴𝑎(1, s).

Under these assumptions, the policy 𝜋 is an optimal policy, i.e., 𝜋 solves prob-

lem (2.1).

38

The proof of the result (found in Section A.1.4 of Appendix A) follows by showing

that any action 𝑎 such that 𝐴𝑎(1, s) > 0 is an action that is greedy with respect to

the objective value 𝑍*(·) which, by combining Propositions 2 and 3, is equal to the

optimal value function 𝐽*(·).

2.3.4 Fluid-based heuristic

Theorem 1 tells us that, assuming that for every initial state s the optimal solution of

problem (2.2) for initial state s is achievable, we immediately have an optimal policy

by simply looking at the optimal values of the 𝐴 variables at the first period (𝑡 = 1).

Typically, however, the optimal solution of (2.2) will not be achievable. It nevertheless

seems reasonable to expect that in many problems, the optimal solution (x(s),A(s))

may be close to being achievable for many states s, because (x(s),A(s)) still respects

the transition behavior of the system at the level of individual components. Con-

sequently, the action arg max𝑎∈𝒜𝐴𝑎(1, s) should then be close to an optimal action

for many states s. It is therefore reasonable to expect that, by selecting the action

𝑎 as arg max𝑎∈𝒜 𝐴𝑎(1, s), one may often still be able to get good performance, even

though the optimal solution of problem (2.2) may not be achievable.

Notwithstanding the question of achievability, applying this intuition in practice is

not immediately possible. The reason for this is that problem (2.2) is an LO problem

with a countably infinite number of variables and constraints, and so cannot be solved

using standard solvers. Towards the goal of developing a practical heuristic policy

for problem (2.1), we now consider an alternate, finite problem that can be viewed

as an approximation to problem (2.2). This new formulation, presented below as

problem (2.3), requires the decision maker to specify a time horizon 𝑇 over which

the evolution of the system will be modeled. For 𝑡 ∈ {1, . . . , 𝑇}, the variables 𝑥𝑚
𝑘𝑎(𝑡)

and 𝐴𝑎(𝑡) have the same meaning as in problem (2.3). To model the evolution of

the system beyond 𝑡 = 𝑇 , we use the variable 𝑥𝑚
𝑘𝑎(𝑇 + 1) to represent the expected

discounted long-run frequency with which component 𝑚 is in state 𝑘 and action 𝑎

is taken from 𝑡 = 𝑇 + 1 on. Similarly, we use 𝐴𝑎(𝑇 + 1) to represent the expected

discounted frequency with which action 𝑎 is taken from 𝑡 = 𝑇 + 1 on.

39

With these definitions, the formulation corresponding to initial state s is presented

below.

maximize
x,A

𝑇+1∑︁
𝑡=1

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑡−1 · 𝑔𝑚𝑘𝑎 · 𝑥𝑚
𝑘𝑎(𝑡) (2.3a)

subject to
∑︁
𝑎∈𝒜

𝑥𝑚
𝑗𝑎(𝑡) =

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎̃∈𝒜

𝑝𝑚𝑘𝑗𝑎̃ · 𝑥𝑚
𝑘𝑎̃(𝑡− 1),

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑡 ∈ {2, . . . , 𝑇}, 𝑗 ∈ 𝒮𝑚, (2.3b)∑︁
𝑎∈𝒜

𝑥𝑚
𝑗𝑎(𝑇 + 1) =

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 · 𝑥𝑚
𝑘𝑎(𝑇) + 𝛽 ·

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 · 𝑥𝑚
𝑘𝑎(𝑇 + 1),

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑗 ∈ 𝒮𝑚, (2.3c)∑︁
𝑘∈𝒮𝑚

𝑥𝑚
𝑘𝑎(𝑡) = 𝐴𝑎(𝑡), ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑎 ∈ 𝒜, 𝑡 ∈ {1, . . . , 𝑇 + 1}

(2.3d)∑︁
𝑎∈𝒜

𝑥𝑚
𝑘𝑎(1) = 𝛼𝑚

𝑘 (s), ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, (2.3e)

𝑥𝑚
𝑘𝑎(𝑡) ≥ 0, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑎 ∈ 𝒜, 𝑘 ∈ 𝒮𝑚, 𝑡 ∈ {1, . . . , 𝑇 + 1},

(2.3f)

𝐴𝑎(𝑡) ≥ 0, ∀ 𝑎 ∈ 𝒜, 𝑡 ∈ {1, . . . , 𝑇 + 1}. (2.3g)

With regard to constraints, we retain the same conservation constraints that relate

the 𝑥𝑚
𝑘𝑎 variables at 𝑡−1 to 𝑡, the initial state constraint and the consistency constraints

that relate the 𝑥𝑚
𝑘𝑎 and the 𝐴𝑎 variables at a time 𝑡, for 𝑡 ∈ {1, . . . , 𝑇}. Beyond

𝑡 = 𝑇 , constraint (2.3c) models the long-run transition behavior of the system. This

constraint can be interpreted as a conservation relation: the left hand side represents

the expected discounted number of times from 𝑇 + 1 on that we take an action out

of component 𝑚 being in state 𝑗, while the right hand side represents the expected

discounted number of times that we enter state 𝑗 from 𝑇 +1 on. More specifically, the

first right-hand side term represents the expected number of times that we enter state

𝑗 at time 𝑇 + 1 (which is not discounted, since 𝑇 + 1 is the first period of the horizon

{𝑇 + 1, 𝑇 + 2, 𝑇 + 3, . . . }) and the second term represents the expected discounted

40

number of times that we enter state 𝑗 from 𝑇 +2 on. Note also that constraint (2.3d),

which is the analog of constraint (2.2c), extends from 𝑡 = 1 to 𝑡 = 𝑇 +1, ensuring that

the 𝑥𝑚
𝑘𝑎(𝑇 + 1) and the 𝐴𝑎(𝑇 + 1) variables are also consistent with each other. With

regard to the objective, observe that rather than being an infinite sum from 𝑡 = 1,

the objective of problem (2.3) is a finite sum that extends from 𝑡 = 1 to 𝑡 = 𝑇 + 1.

Let 𝑍*
𝑇 (s) denote the optimal value of problem (2.3). Problem (2.3), like prob-

lem (2.2), provides an upper bound on the optimal value function at 𝐽*(s), and this

bound improves with 𝑇 , as indicated by the following result.

Proposition 4 For each s ∈ 𝒮 and all 𝑇 ∈ {1, 2, . . . }:

(a) 𝑍*
𝑇 (s) ≥ 𝐽*(s); and

(b) 𝑍*
𝑇 (s) ≥ 𝑍*

𝑇+1(s).

The proof of part (a) of Proposition 4 follows along similar lines to Proposition 2,

while the proof of part (b) follows by showing that a solution to problem (2.3) with

𝑇 + 1 can be used to construct a feasible solution for problem (2.3) with 𝑇 that

achieves an objective value of 𝑍*
𝑇+1(s). The proof of this proposition can be found in

Section A.1.5 of Appendix A. Part (a) of the proposition is useful because in passing

from the infinite to the finite formulation, we have not lost the useful property that

the objective value provides an upper bound on the optimal value function. Part (b)

is important because it suggests a tradeoff in bound quality and computation: by

increasing 𝑇 , the quality of the bound improves, but the size of the formulation (the

number of variables and constraints) increases. We will see later in Sections 2.5.4 and

2.5.5 that typically 𝑇 does not need to be very large to ensure strong bounds and

performance.

With this formulation, our heuristic policy is then defined as Algorithm 1.

Before continuing, we comment on two important ways in which problem (2.3) can

be extended and one limitation of formulation (2.3). First of all, in problem (2.3),

we formulated the decomposable MDP problem by defining decision variables that

correspond to first-order information: in particular, 𝑥𝑚
𝑘𝑎(𝑡) represents the frequency

41

Algorithm 1 Fluid LO heuristic for infinite horizon problem with known stationary
probabilities.
Require: Parameter 𝑇 ; data p, g, 𝛽; current state s ∈ 𝒮.

Solve problem (2.3) corresponding to initial state s, horizon 𝑇 and data p, g, 𝛽 to
obtain an optimal solution (x(s),A(s)).
Take action 𝑎̃, where 𝑎̃ = arg max𝑎∈𝒜𝐴𝑎(1, s).

with which a single component (component 𝑚) is in state 𝑘 and action 𝑎 is taken at

time 𝑡. As shown in Section 2.3.3, the resulting formulation provides an upper bound

on the optimal expected discounted reward. We can improve on this by considering

higher-order fluid formulations, where rather than defining our decision variables to

correspond to one component being in a state, we can define decision variables cor-

responding to combinations of components being in combinations of states, while a

certain action is taken at a certain time. For example, a second-order formulation

would correspond to using decision variables that model how frequently pairs of com-

ponents are in different pairs of states while an action is taken at each time. As the

order of the formulation increases, the objective value becomes an increasingly tighter

bound on the optimal value, and it may be reasonable to expect better performance

from using Algorithm 1; however, the size of the formulation increases rapidly.

Second, problem (2.3) models an infinite horizon problem and Algorithm 1 is a

heuristic for this problem. For finite horizon problems, we can apply our approach

as follows. Problem (2.3) can be modified by setting 𝑇 to the horizon of the actual

problem and removing the terminal 𝑇 + 1 decision variables that model the long-run

evolution of the system. Then, if we are at state s at period 𝑡′, we restrict the fluid

problem to {𝑡′, 𝑡′ + 1, . . . , 𝑇} and use constraint (2.3e) to set the initial state at 𝑡′ to

s. We then solve the problem to obtain the optimal solution (x(s),A(s)) and we take

the action 𝑎 that maximizes 𝐴𝑎(𝑡, s). Note that if the transition probabilities change

over time (i.e., rather than 𝑝𝑚𝑘𝑗𝑎 we have 𝑝𝑚𝑘𝑗𝑎(𝑡) for 𝑡 ∈ {1, . . . , 𝑇 − 1}), we may also

modify constraint (2.3b) and replace 𝑝𝑚𝑘𝑗𝑎 with 𝑝𝑚𝑘𝑗𝑎(𝑡), without changing the size or

the nature of the resulting formulation.

Finally, we comment on one limitation to the fluid formulation (2.3). Prob-

lem (2.3) is formulated in terms of the system action space 𝒜; the actions that index

42

the 𝑥𝑚
𝑘𝑎(𝑡) and 𝐴𝑎(𝑡) variables are elements of the system action space 𝒜. For certain

problems, the system action space 𝒜 may be small and problem (2.3) may be easy

to solve. For example, in a multiarmed bandit problem where exactly one bandit

must be activated, |𝒜| = 𝑀 (one of the 𝑀 bandits); similarly, in an optimal stopping

problem, |𝒜| = 2 (stop or continue). For other problems, the action space of the

problem may grow exponentially (e.g., a bandit problem where one may activate up

to 𝐾 of 𝑀 bandits). For such problems, the fluid formulation (2.3) will be harder to

solve; we do not consider this regime here. The development of a scalable solution

method for large scale versions of problem (2.3) constitutes an interesting direction

for future research.

2.4 Comparisons to other approaches

In this section, we compare our finite fluid formulation (2.3) against three state-of-

the-art formulations that can be used to solve decomposable MDPs. We begin by

stating these formulations: in Sections 2.4.1, 2.4.2 and 2.4.3, we present the ALO,

classical Lagrangian relaxation and the alternate Lagrangian relaxation formulations,

respectively. Then, in Section 2.4.4 we state a key theoretical result that asserts that

the finite fluid formulation (2.3) provides a provably tighter bound than all three

formulations. Finally, we conclude with a discussion of the sizes of the formulations

in Section 2.4.5.

2.4.1 Approximate linear optimization

For the ALO formulation of [38], we approximate the value function using the same

functional form as in [2]:

𝐽𝐴𝐿𝑂(s) =
𝑀∑︁

𝑚=1

𝐽𝑚
𝑠𝑚 , (2.4)

43

i.e., we assume that each state of each component contributes an additive effect. For

a given initial state s ∈ 𝒮, the corresponding ALO formulation is then

minimize
J

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s) · 𝐽𝑚

𝑘 (2.5a)

subject to
𝑀∑︁

𝑚=1

𝐽𝑚
𝑠𝑚 ≥

𝑀∑︁
𝑚=1

𝑔𝑚𝑠𝑚𝑎 + 𝛽

𝑀∑︁
𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗 , ∀ s̄ ∈ 𝒮, 𝑎 ∈ 𝒜. (2.5b)

To derive a policy from J, we take the action 𝑎̃ that is greedy with respect to 𝐽𝐴𝐿𝑂;

this action is defined as

𝑎̃ = arg max
𝑎∈𝒜

{︃
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚𝑎 + 𝛽 ·
𝑀∑︁

𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗

}︃
. (2.6)

Let 𝑍*
𝐴𝐿𝑂(s) denote the objective value of problem (2.5) with initial state s. The

following result, due to [2], establishes that 𝑍*
𝐴𝐿𝑂(s) upper bounds the optimal value

function at s. The proof can be found in [2] and is thus omitted.

Proposition 5 (Proposition 4 of [2].) For all s ∈ 𝒮, 𝑍*
𝐴𝐿𝑂(s) ≥ 𝐽*(s).

2.4.2 Classical Lagrangian relaxation

We now present the classical Lagrangian relaxation (CLR) approach. In order to

apply this approach to our decomposable MDP defined in Section 2.3.1, we require

three additional assumptions.

Assumption 1 In addition to the system state space being decomposable along com-

ponents, the action space also decomposes along the components. More precisely, each

component 𝑚 is endowed with both a state space 𝒮𝑚 and an action space 𝒜𝑚. Thus,

an action 𝑎 in the system action space can be represented as a tuple of component

actions, 𝑎 = (𝑎1, . . . , 𝑎𝑚) ∈ 𝒜 ⊆ 𝒜1 × · · · × 𝒜𝑀 .

Assumption 2 The rewards and transition probabilities decompose with respect to

the new action spaces 𝒜𝑚. Let 𝑅𝑚
𝑘𝑎𝑚 denote the reward from component 𝑚 when action

44

𝑎𝑚 is taken in state 𝑘 and let 𝑝𝑚𝑘𝑎𝑚 denote the transition probability of component 𝑚

when action 𝑎𝑚 is taken. We require that 𝑝𝑚𝑘𝑗𝑎 = 𝑝𝑚𝑘𝑎𝑚 and 𝑔𝑚𝑘𝑎 = 𝑅𝑚
𝑘𝑎𝑚 whenever the

𝑚th component of 𝑎 is 𝑎𝑚.

Assumption 3 The system action state space 𝒜 is defined implicitly through a link-

ing constraint on the component actions:

𝒜 =

{︃
𝑎 = (𝑎1, . . . , 𝑎𝑀) ∈ 𝒜1 × · · · × 𝒜𝑀

𝑀∑︁
𝑚=1

D𝑚(𝑎𝑚) ≤ b

}︃
, (2.7)

where D𝑚 : 𝒜𝑚 → R𝑞 is a function for each 𝑚 and b ∈ R𝑞 for some finite 𝑞.

When these three assumptions hold, the Lagrangian approach involves dualizing the

linking constraint
∑︀𝑀

𝑚=1D
𝑚(𝑎𝑚) ≤ b by introducing a Lagrange multiplier vector

𝜆 ∈ R𝑝 for this linking constraint. The CLR formulation of the problem can be

written as follows:

minimize
𝜆,V

𝜆𝑇b

1− 𝛽
+

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s) · 𝑉 𝑚

𝑘 (2.8a)

subject to 𝑉 𝑚
𝑘 ≥ 𝑅𝑚

𝑘𝑎𝑚 − 𝜆𝑇D𝑚(𝑎𝑚) + 𝛽 ·
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑚 · 𝑉 𝑚
𝑗 ,

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎𝑚 ∈ 𝒜𝑚 (2.8b)

𝜆 ≥ 0. (2.8c)

The optimal variable V can be interpreted as a component-wise approximation to

the value function. One can form a value function approximation that is analogous

to the ALO approximation in equation (2.4) and take the greedy action analogously

to equation (2.6).

45

The dual of problem (2.8) is

maximize
z

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎𝑚∈𝒜𝑚

𝑅𝑚
𝑘𝑎𝑚 · 𝑧𝑚𝑘𝑎𝑚 (2.9a)

subject to
∑︁

𝑎𝑚∈𝒜𝑚

𝑧𝑚𝑗𝑎𝑚 = 𝛼𝑚
𝑗 (s) + 𝛽 ·

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎𝑚∈𝒜𝑚

𝑝𝑚𝑘𝑗𝑎𝑚 · 𝑧𝑚𝑘𝑎𝑚 ,

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑗 ∈ 𝒮𝑚, (2.9b)
𝑀∑︁

𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎𝑚∈𝒜𝑚

D𝑚(𝑎𝑚)𝑧𝑚𝑘𝑎𝑚 ≤
b

1− 𝛽
, (2.9c)

𝑧𝑚𝑘𝑎𝑚 ≥ 0, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎𝑚 ∈ 𝒜𝑚. (2.9d)

The variable 𝑧𝑚𝑘𝑎𝑚 can be interpreted as the expected discounted frequency with which

component 𝑚 is in state 𝑘 and action 𝑎𝑚 is being taken over the entire infinite horizon.

Constraint (2.9b) models the transition dynamics of component 𝑚 in an expected

discounted sense, while constraint (2.9c) can be interpreted as the expected discounted

version of the linking constraint that defines the action space 𝒜 in equation (2.7).

Let 𝑍*
𝐶𝐿𝑅(s) be the optimal objective value of problem (2.8) corresponding to

initial state s. The following two results, due to [2], establish that the CLR provides

an upper bound on the optimal value function and that ALO provides a tighter bound

than the CLR. The proofs can be found in [2] and are omitted.

Proposition 6 (Proposition 2 of [2].) When Assumptions 1 – 3 hold, for all s ∈ 𝒮,

𝑍*
𝐶𝐿𝑅(s) ≥ 𝐽*(s).

Proposition 7 (Corollary 1 of [2].) When Assumptions 1 – 3 hold, for all s ∈ 𝒮,

𝑍*
𝐴𝐿𝑂(s) ≤ 𝑍*

𝐶𝐿𝑅(s).

Furthermore, [2] provide a simple parameterized problem (Section 3.3 of that paper)

where the difference between 𝑍*
𝐴𝐿𝑂(s) and 𝑍*

𝐶𝐿𝑅(s) can be made arbitrarily large.

2.4.3 Alternate Lagrangian relaxation

The CLR formulation requires Assumptions 1 – 3 to hold. When these assumptions

hold, it is possible to exploit the definition of the system action space in equation (2.7)

46

in order to arrive at formulation (2.8). However, the decomposable MDP that we have

defined in Section 2.3.1 may not be consistent with these assumptions; more precisely,

the system action space may not naturally decompose along the components. Con-

sider, for example, an optimal stopping problem where the system is actually 𝑀

independent components. In this example, the action space (which consists of two

actions, stop or continue) does not decompose along each component, and it does not

make sense to think of the system action space as being the feasible set of a coupling

constraint on the action spaces of 𝑀 small MDPs.

Surprisingly, it turns out that there is a transformation by which one can convert

any decomposable MDP with a general system action space 𝒜 into a weakly coupled

MDP and thus apply the Lagrangian relaxation approach, even when the action

space 𝒜 does not have a representation of the form in equation (2.7). The steps of

this transformation are as follows.

1. Construct 𝑀 small MDPs, where the 𝑚th small MDP corresponds to compo-

nent 𝑚 of the decomposable MDP.

2. Set the state space of small MDP 𝑚 to be 𝒮𝑚, the state space of component 𝑚.

3. Set the action space of small MDP 𝑚 to be 𝒜, the action space of the complete

system. (Thus, each small MDP involves controlling how component 𝑚 evolves

across its own state space, where we may choose any action from the system

action space 𝒜.)

4. Enforce the following coupling constraint:

I{𝑎𝑚 = 𝑎} − I{𝑎𝑚+1 = 𝑎} = 0, ∀ 𝑚 ∈ {1, . . . ,𝑀 − 1}, 𝑎 ∈ 𝒜, (2.10)

or equivalently, that

𝑎𝑚 = 𝑎𝑚+1, ∀ 𝑚 ∈ {1, . . . ,𝑀 − 1}.

The above constraint is simple: it requires that the actions taken in small MDP

47

𝑚 and small MDP 𝑚+ 1 must be the same, or equivalently, the actions 𝑎𝑚, 𝑎𝑚′

taken in any pair of small MDPs 𝑚,𝑚′ ∈ {1, . . . ,𝑀} must be the same.

It is easy to see that this weakly coupled MDP is exactly the same as the de-

composable MDP of Section 2.3.1. We now construct the Lagrangian relaxation of

this weakly coupled MDP. Introducing the Lagrange multiplier 𝜆𝑚
𝑎 for the (𝑚, 𝑎)

constraint in the family of constraints (2.10) and using 𝜆 to denote the vector of mul-

tipliers, the corresponding Lagrangian relaxation formulation of this weakly coupled

MDP for initial state s, can be shown to be

minimize
𝜆,V

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s)𝑉 𝑚

𝑘 (2.11a)

subject to 𝑉 𝑚
𝑘 ≥ 𝑔𝑚𝑘𝑎 − I{𝑚 < 𝑀} · 𝜆𝑚

𝑎 + I{𝑚 > 1} · 𝜆𝑚−1
𝑎 + 𝛽 ·

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑉
𝑚
𝑗 ,

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜. (2.11b)

We refer to this relaxation as the alternate Lagrangian relaxation (ALR). A more

detailed derivation of the ALR can be found in Appendix A.3. As with the CLR and

the ALO, one can form a value function approximation of the form in equation (2.4)

using the optimal V values and take the greedy action analogously to equation (2.6).

It should be clear that the ALR problem (2.11) is not the same as the CLR

problem (2.8). Problem (2.11) only decomposes the state and does not decompose

the system action space; it accomplishes this by endowing each component with the

system action space and enforcing the action consistency constraint (2.10). Prob-

lem (2.8), on the other hand, decomposes the state and the action space by using

the structure of the action space given in equation (2.7). The resulting formulations

thus differ in their sizes; typically, the ALR will be larger than the CLR because the

dimensions of the ALR problem (numbers of variables and constraints) scale with the

number of system actions. Note that problem (2.8) can be formulated only when As-

sumptions 1 – 3 hold. On the other hand, problem (2.11) can always be formulated,

regardless of the structure of the action space. To the best of our knowledge, this

type of alternate Lagrangian relaxation has not been proposed before.

48

To understand how the ALR relates to the fluid formulation, it is helpful to

formulate the dual of problem (2.11):

maximize
z

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑔𝑚𝑘𝑎𝑧
𝑚
𝑘𝑎 (2.12a)

subject to
∑︁
𝑎′∈𝒜

𝑧𝑚𝑗𝑎′ − 𝛽
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 · 𝑧𝑚𝑘𝑎 = 𝛼𝑚
𝑗 (s), ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑗 ∈ 𝒮𝑚,

(2.12b)∑︁
𝑘∈𝒮𝑚

𝑧𝑚𝑘𝑎 =
∑︁

𝑘∈𝒮𝑚+1

𝑧𝑚+1
𝑘𝑎 , ∀ 𝑚 ∈ {1, . . . ,𝑀 − 1}, 𝑎 ∈ 𝒜, (2.12c)

𝑧𝑚𝑘𝑎 ≥ 0, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜. (2.12d)

The dual variable 𝑧𝑚𝑘𝑎 can be interpreted as the expected discounted number of times

that the component 𝑚 is in state 𝑘 and action 𝑎 is taken over the entire horizon.

Constraint (2.12b) models the long-term transition behavior of small MDP 𝑚, while

constraint (2.12c) can be interpreted as the expected discounted version of the linking

constraint (2.10); the expected discounted number of times that we take action 𝑎 in

small MDP 𝑚 must be the same as the expected discounted number of times that we

take action 𝑎 in small MDP 𝑚 + 1.

Having formed the dual problem (2.12), we can see that the ALR dual (2.12)

and the finite fluid formulation (2.3) bear some resemblance, in terms of accounting

for how frequently components are in specific states while a specific action is taken,

accounting for the transition behavior and accounting for the fact that component

state-action frequencies (the 𝑥𝑚
𝑘𝑎(𝑡) variables in problem (2.3) and the 𝑧𝑚𝑘𝑎 variables

in problem (2.12)) are linked across components through the action. However, the

key difference lies in the fact that in problem (2.12), time is fully aggregated: the 𝑧𝑚𝑘𝑎

variables represent the long run expected discounted frequency with which component

𝑚 is in state 𝑘 and action 𝑎 is taken from 𝑡 = 1 on. In contrast, in problem (2.3),

time is partially disaggregated: for 𝑡 = 1 to 𝑡 = 𝑇 , the transition behavior of the

system is modeled separately for each 𝑡, and for 𝑡 = 𝑇 + 1 and beyond, the transition

behavior is modeled in the same aggregate sense (compare constraints (2.12b) and

49

(2.3c)). One can thus interpret the fluid formulation as a partially disaggregated

version of the ALR dual (2.12). If one imagines the finite fluid formulation (2.3) with

𝑇 = 0 – i.e., the formulation does not account for the transition behavior separately

for any periods and only accounts for transition behavior in a long-term discounted

sense, from period 1 (= 𝑇 + 1) on – then one can see that it would be equivalent to

the ALR dual problem (2.12).

Let 𝑍*
𝐴𝐿𝑅(s) denote the optimal value of the ALR formulation (2.11) correspond-

ing to initial state s and let 𝑍*
𝐴𝐿𝑂(s) denote the optimal value of the ALO formu-

lation (2.5) corresponding to initial state s. The following result establishes that

problems (2.11) and (2.5) are equivalent.

Theorem 2 For each s ∈ 𝒮:

(a) 𝑍*
𝐴𝐿𝑂(s) = 𝑍*

𝐴𝐿𝑅(s); and

(b) Let V ∈ R
∑︀𝑀

𝑚=1 |𝒮𝑚|. There exists 𝜆 such that (V,𝜆) is an optimal solution

for the Lagrangian relaxation formulation (2.11) corresponding to state s if and

only if V is an optimal solution for the ALO formulation (2.5) corresponding

to state s.

The proof of this result, found in Section A.1.6 of Appendix A, follows by essentially

showing that the optimal solution of one problem leads to a feasible solution for the

other problem with the same optimal value.

We offer two remarks on Theorem 2. First, we believe Theorem 2 to be valu-

able because the alternate Lagrangian relaxation problem (2.11) is considerably more

tractable than the ALO problem (2.5). Specifically, the former has a number of vari-

ables and constraints that is linear in the problem dimensions, while the latter has

a number of constraints that is in general exponential in the number of components.

One of the challenges of applying the ALO approach is that, although applying a

basis function approximation as in equation (2.4) allows one to reduce the number

of variables, one is still left with a large number of constraints (one for each pair

(s, 𝑎) ∈ 𝒮 × 𝒜). To cope with the large number of constraints, one might use con-

straint sampling [39] or column generation techniques (see, e.g., [1, 2]). Theorem 2

50

implies that in cases where 𝒜 is not too large, one can avoid resorting to these tech-

niques by directly solving problem (2.11): by part (a) of the theorem, the resulting

bound will be the same as that of the ALO formulation, and by part (b), the resulting

value function approximation is also a valid ALO value function approximation (since

the optimal V for the ALR problem (2.11) is also a valid optimal solution for the

ALO problem (2.5)).

Second, it is valuable to contrast Theorem 2 to Proposition 7, which pertains to

the relationship between the CLR and the ALO formulations. Theorem 2 asserts

that the ALR and the ALO are equivalent, whereas Proposition 7 asserts that the

CLR is no tighter than the ALO (moreover, as discussed in Section 2.4.2 there exist

simple examples where the difference between 𝑍*
𝐴𝐿𝑂(s) and 𝑍*

𝐶𝐿𝑅(s) can be extremely

large). Thus, problem (2.11) is a tighter formulation of the MDP than problem (2.8),

as summarized in the following corollary.

Corollary 1 When Assumptions 1 – 3 hold, for all s ∈ 𝒮, 𝑍*
𝐴𝐿𝑅(s) ≤ 𝑍*

𝐶𝐿𝑅(s).

2.4.4 Comparison of bounds

With Theorem 2 in hand, we are ready to state our key theoretical result, whose proof

appears in Section A.1.7 of Appendix A.

Theorem 3 For each s ∈ 𝒮 and all 𝑇 ∈ {1, 2, . . . }:

(a) 𝑍*
𝑇 (s) ≤ 𝑍*

𝐴𝐿𝑅(s);

(b) 𝑍*
𝑇 (s) ≤ 𝑍*

𝐴𝐿𝑂(s); and

(c) 𝑍*
𝑇 (s) ≤ 𝑍*

𝐶𝐿𝑅(s) (when Assumptions 1 – 3 hold).

Part (a) follows by using a solution of problem (2.3) with 𝑇 to construct a feasi-

ble solution with objective value 𝑍*
𝑇 (s) for problem (2.12); part (b) follows by using

Theorem 2 and part (a); and part (c) follows by combining part (b) with Proposi-

tion 7. In Section 2.5, where we apply our fluid approach to multiarmed bandits, we

provide numerical examples that show these three inequalities can be strict and the

51

bounds can be significantly different. The above result, Theorem 2, Proposition 4

and Proposition 7 can together be summarized in the following corollary.

Corollary 2 When Assumptions 1 – 3 hold, for all s ∈ 𝒮 and all 𝑇 ∈ {1, 2, . . . }:

𝐽*(s) ≤ 𝑍*
𝑇 (s) ≤ . . . ≤ 𝑍*

2(s) ≤ 𝑍*
1(s) ≤ 𝑍*

𝐴𝐿𝑂(s) = 𝑍*
𝐴𝐿𝑅(s) ≤ 𝑍*

𝐶𝐿𝑅(s).

Theorem 3 essentially asserts that the fluid formulation provides a provably tighter

bound than all three alternate approaches: the classical Lagrangian relaxation, the

alternate Lagrangian relaxation and the ALO. The classical Lagrangian relaxation

and the ALO formulations have been widely applied to solve practical problems; it

is fair to say that these approaches constitute the state-of-the-art in solving large

scale MDPs of practical interest. Our result is therefore significant because we have

shown that the finite fluid formulation (2.3) leads to bounds that are at least as good

as those of the Lagrangian relaxation and ALO formulations. In Section 2.5.4, we

show that these difference can in fact be significant. More significantly, although

Theorem 3 pertains to bounds, it is reasonable to expect that a formulation that

produces a tighter bound will also produce better policies. Indeed, we will later

show numerically that the heuristic policy given as Algorithm 1 based on the finite

fluid problem (2.3) can significantly outperform the Lagrangian relaxation and ALO

approaches.

2.4.5 Comparison of formulation sizes

As a complement to Theorem 3 where we compare the formulation bounds, we now

compare the formulations in terms of their sizes. Table 2.1 summarizes the sizes of

the four types of formulations in terms of the number of variables and the number of

constraints. (Recall that 𝑞 is the number of constraints that define the action space

in equation (2.7) for the CLR approach.)

Although the exact numbers of variables and constraints will depend on the spe-

cific values of |𝒮𝑚|, |𝒜|, |𝒜𝑚|, 𝑇 and 𝑞, we can derive some general qualitative insights:

52

Formulation Number of variables Number of constraints

ALO problem (2.5)
∑︀𝑀

𝑚=1 |𝒮𝑚| |𝒮| · |𝒜|
CLR problem (2.8)

∑︀𝑀
𝑚=1 |𝒮𝑚|+ 𝑞

∑︀𝑀
𝑚=1 |𝒮𝑚| · |𝒜𝑚|

ALR problem (2.11)
∑︀𝑀

𝑚=1 |𝒮𝑚|+ (𝑀 − 1) · |𝒜|
∑︀𝑀

𝑚=1 |𝒮𝑚| · |𝒜|

Fluid problem (2.3) (𝑇 + 1)
(︁∑︀𝑀

𝑚=1 |𝒮𝑚| · |𝒜|+ |𝒜|
)︁

(𝑇 + 1)
(︁∑︀𝑀

𝑚=1 |𝒮𝑚|+𝑀 |𝒜|
)︁

Table 2.1: Comparison of sizes of formulations. (The number of constraints quoted
for each formulation does not count any nonnegativity constraints.)

∙ When Assumptions 1 – 3 hold and the action space can be described by a small

number 𝑞 of linking constraints as in equation (2.7), then the CLR problem (2.8)

will in general be the smallest formulation, as its dimension are not dependent

on |𝒜| and |𝒮|.

∙ The largest formulation will in general be the ALO problem (2.5), as the number

of constraints in the ALO scales with the size of the system state space |𝒮| and

the size of the system action space |𝒜|.

∙ The ALR problem (2.11) and the finite fluid formulation (2.3) will be somewhere

in between the CLR problem (2.8) and the ALO problem (2.5), as the numbers

of variables and constraints depend on the size of the system action space |𝒜|.

Between the two, the fluid formulation will be larger than the ALR formulation

due to the dependence on 𝑇 .

Thus, while the fluid formulation provides a provably tighter bound than the other

three formulations, it will in general not be the smallest formulation. In situations

where the system action space 𝒜 is not too large, the improved quality of the bound

may justify the additional computational effort required for the fluid formulation.

2.4.6 Disaggregating the ALO and the ALR

The key idea in the fluid problem (2.3) is to partially disaggregate time in the first

𝑇 periods, and then aggregate time in a discounted way from period 𝑇 + 1 on. This

disaggregation is what allows us to prove that the fluid problem is tighter than the

53

ALR (part (a) of Theorem 3). One might then wonder if this type of disaggregation

can be applied in the ALR and the ALO. To understand how this disaggregation ap-

plies in the ALR and ALO formulations, let us define two new partially disaggregated

formulations: the ALR(𝑇) formulation and the ALO(𝑇) formulation.

The ALR(𝑇) formulation is

minimize
𝜆,V

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s)𝑉 𝑚

𝑘 (1) (2.13a)

subject to 𝑉 𝑚
𝑘 (𝑡) ≥ 𝑔𝑚𝑘𝑎 − I{𝑚 < 𝑀} · 𝜆𝑚

𝑎 (𝑡) + I{𝑚 > 1} · 𝜆𝑚−1
𝑎 (𝑡)

+ 𝛽 ·
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑉
𝑚
𝑗 (𝑡 + 1),

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜, 𝑡 ∈ {1, . . . , 𝑇} (2.13b)

𝑉 𝑚
𝑘 (𝑇 + 1) ≥ 𝑔𝑚𝑘𝑎 − I{𝑚 < 𝑀} · 𝜆𝑚

𝑎 (𝑇 + 1) + I{𝑚 > 1} · 𝜆𝑚−1
𝑎 (𝑇 + 1)

+ 𝛽 ·
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑉
𝑚
𝑗 (𝑇 + 1),

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜. (2.13c)

Let 𝑍*
𝐴𝐿𝑅(𝑇)(s) denote the optimal value of problem (2.13).

The ALO(𝑇) formulation is

minimize
J

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s) · 𝐽𝑚

𝑘 (1) (2.14a)

subject to
𝑀∑︁

𝑚=1

𝐽𝑚
𝑠𝑚(𝑡) ≥

𝑀∑︁
𝑚=1

𝑔𝑚𝑠𝑚𝑎 + 𝛽

𝑀∑︁
𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1),

∀ s̄ ∈ 𝒮, 𝑎 ∈ 𝒜, 𝑡 ∈ {1, . . . , 𝑇}, (2.14b)
𝑀∑︁

𝑚=1

𝐽𝑚
𝑠𝑚(𝑇 + 1) ≥

𝑀∑︁
𝑚=1

𝑔𝑚𝑠𝑚𝑎 + 𝛽

𝑀∑︁
𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗 (𝑇 + 1), ∀ s̄ ∈ 𝒮, 𝑎 ∈ 𝒜.

(2.14c)

Let 𝑍*
𝐴𝐿𝑂(𝑇)(s) denote the optimal value of problem (2.14).

We then have the following theoretical result.

54

Theorem 4 For all s ∈ 𝒮, 𝑇 ∈ {1, 2, . . . }, we have 𝑍*
𝑇 (s) = 𝑍*

𝐴𝐿𝑅(𝑇)(s) = 𝑍*
𝐴𝐿𝑂(𝑇)(s).

The first part of the equality re-states more rigorously the earlier observation from

Section 2.4.3, which is that the fluid problem can be viewed as the ALR problem with

time disaggregated over a horizon of 𝑇 periods. The second equality asserts that the

fluid problem is equivalent to a time-disaggregated version of the ALO, analogously

to Theorem 2.

2.5 Application to multiarmed bandit problems

2.5.1 Problem definition

In the multiarmed bandit problem, the decision maker is presented with a set of

bandits/arms, and each arm is endowed with some state space. At each point in

time, the decision maker needs to select one of the arms to activate so as to maximize

his long-term (over an infinite horizon) expected discounted reward. We consider the

regular multiarmed bandit problem, where only the activated arm changes state and

generates reward, and the restless multiarmed bandit problem, where inactive arms

may also change state state (i.e., passive transitions are allowed) and generate reward

(i.e., there are passive rewards).

2.5.2 Fluid model

The multiarmed problem can be readily formulated in our fluid framework. The com-

ponents 𝑀 of the stochastic system correspond to the individual bandits. The action

space 𝒜 is defined here as 𝒜 = {1, . . . ,𝑀}. The reward 𝑔𝑚𝑘𝑎, for 𝑚 ∈ {1, . . . ,𝑀},

𝑘 ∈ 𝒮𝑚 and 𝑎 ∈ 𝒜 is the reward that is earned when arm 𝑚 is in state 𝑘 and arm

𝑎 is activated. Similarly, 𝑝𝑚𝑘𝑗𝑎 is the probability that bandit 𝑚 transitions from state

𝑘 ∈ 𝒮𝑚 to state 𝑗 ∈ 𝒮𝑚 when arm 𝑎 is activated. In the case of the regular bandit

problem, we need to ensure that whenever 𝑚 ̸= 𝑎, 𝑔𝑚𝑘𝑎 = 0 for every 𝑘 ∈ 𝒮𝑚 and

𝑝𝑚𝑘𝑗𝑎 = I{𝑘 = 𝑗} for every pair of states 𝑘, 𝑗 ∈ 𝒮𝑚. In the case of the restless bandit

55

problem, we only need to ensure that whenever 𝑎, 𝑎′,𝑚 ∈ {1, . . . ,𝑀}, with 𝑚 ̸= 𝑎

and 𝑚 ̸= 𝑎′, that 𝑔𝑚𝑘𝑎 = 𝑔𝑚𝑘𝑎′ for every 𝑘 ∈ 𝒮𝑚 and 𝑝𝑚𝑘𝑗𝑎 = 𝑝𝑚𝑘𝑗𝑎′ for every 𝑘, 𝑗 ∈ 𝒮𝑚.

2.5.3 Relation to [19]

One interesting property of the fluid formulation is how it relates to the performance

measure formulation developed in [19]. Let 𝑤𝑚
𝑗0 be defined for every bandit 𝑚 ∈

{1, . . . ,𝑀}, state 𝑗 ∈ 𝒮𝑚 as the expected discounted number of times that bandit

𝑚 is in state 𝑗 and it is not activated. Similarly, let 𝑤𝑚
𝑗1 be defined as the expected

discounted number of times that bandit 𝑚 is in state 𝑗 and is activated. Let 𝑝𝑚𝑖𝑗1

and 𝑝𝑚𝑖𝑗0 be the active and passive transition probabilities of bandit 𝑚 from state 𝑖

to state 𝑗 respectively, and let 𝑅𝑚
𝑘0 and 𝑅𝑚

𝑘1 be the passive and active rewards from

activating bandit 𝑚 when it is in state 𝑘, respectively. The 𝑤𝑚
𝑗𝑎 variables are referred

to as performance measures. Finally, suppose that the system starts in state s ∈ 𝒮

at time 𝑡 = 1 and as assumed in Section 2.5.1, we must activate exactly one arm at

any period.

For a given collection of performance measures, the corresponding reward is the

sum
∑︀𝑀

𝑚=1

∑︀
𝑘∈𝒮𝑚

∑︀
𝑎∈{0,1}𝑅

𝑚
𝑘𝑎𝑤

𝑚
𝑘𝑎, which forms the objective of the problem. The

performance measures, by their definition, satisfy certain conservation laws, and the

feasible set of performance measures resulting from those laws is referred to as the

performance region. The formulation developed in [19] is to maximize this reward

over the performance region:

maximize
w

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈{0,1}

𝑅𝑚
𝑘𝑎𝑤

𝑚
𝑘𝑎 (2.15a)

subject to
𝑀∑︁

𝑚=1

∑︁
𝑘∈𝒮𝑚

𝑤𝑚
𝑘1 =

1

1− 𝛽
, (2.15b)

𝑤𝑚
𝑗0 + 𝑤𝑚

𝑗1 = 𝛼𝑚
𝑗 (s) + 𝛽

∑︁
𝑖∈𝒮𝑚

∑︁
𝑎∈{0,1}

𝑝𝑚𝑖𝑗𝑎𝑤
𝑚
𝑖𝑎, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑗 ∈ 𝒮𝑚,

(2.15c)

𝑤𝑚
𝑗0, 𝑤

𝑚
𝑗1 ≥ 0, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑗 ∈ 𝒮𝑚. (2.15d)

56

In words, the formulation finds the vector of performance measures w that sat-

isfies the transition constraints at the level of the components and maximizes the

total expected discounted reward, which is just the sum of the performance measures

weighted by their corresponding rewards. Note that in terms of the data defining

the fluid formulation, the data in problem (2.15) and in the finite fluid problem (2.3)

identify as follows. For every bandit 𝑚, states 𝑖 and 𝑗, we have 𝑝𝑚𝑖𝑗1 = 𝑝𝑚𝑖𝑗𝑚, while

𝑝𝑚𝑖𝑗0 = 𝑝𝑚𝑖𝑗𝑎 for every 𝑎 ̸= 𝑚. Similarly, for the rewards, we have 𝑅𝑚
𝑘1 = 𝑔𝑚𝑘𝑚 for every

bandit 𝑚 and state 𝑘, while 𝑅𝑚
𝑘0 = 𝑔𝑚𝑘𝑎 for every 𝑎 ̸= 𝑚. To make decisions, [19]

propose a primal dual heuristic where one solve problem (2.15) at each new state s.

We describe how the heuristic operates for the case when exactly one arm must be

activated at each period; for more details, the interested reader is referred to [19].

Using the solution of the problem, the heuristic considers the optimal variables 𝑤𝑚
𝑠𝑚1

and 𝑤𝑚
𝑠𝑚0 for each 𝑚 ∈ {1, . . . ,𝑀} and proceeds as follows:

1. If exactly one of 𝑤𝑚
𝑠𝑚1 for 𝑚 ∈ {1, . . . ,𝑀} is positive, say bandit 𝑚′, then ac-

tivate bandit 𝑚′. (Intuitively, 𝑤𝑚
𝑠𝑚1 represents the expected discounted amount

of time that bandit 𝑚 is in its initial state 𝑠𝑚 and it is activated; if there is only

one bandit for which this value is positive, the solution suggests that we should

activate this bandit.)

2. If all 𝑤𝑚
𝑠𝑚1 are zero, then activate the bandit 𝑚 ∈ {1, . . . ,𝑀} with the lowest

reduced cost of the active performance measure 𝑤𝑚
𝑠𝑚1. (Intuitively, the reduced

cost of 𝑤𝑚
𝑠𝑚1 represents the marginal decrease in the objective value per unit

increase in 𝑤𝑚
𝑠𝑚1; by selecting the 𝑚 with the lowest reduced cost of 𝑤𝑚

𝑠𝑚1 we

select the bandit that will have the lowest detriment to the objective.)

3. If more than one 𝑤𝑚
𝑠𝑚1 for 𝑚 ∈ {1, . . . ,𝑀} is positive, then activate the bandit

𝑚 with the largest reduced cost of the passive performance measure 𝑤𝑚
𝑠𝑚0 among

those 𝑚 with 𝑤𝑚
𝑠𝑚1 > 0. (Similarly to the previous case, the reduced cost of

𝑤𝑚
𝑠𝑚0 represents the marginal decrease in the objective for a unit increase in the

passive performance measure 𝑤𝑚
𝑠𝑚0; by activating the bandit with the largest

passive reduced cost we try to counteract this effect.)

57

Before continuing on to the results, it is important to establish how the perfor-

mance region formulation relates to the formulations presented in Section 2.4 and to

the fluid method. Let 𝑍*
𝐵𝑁𝑀(s) be the optimal objective value of problem (2.15) when

the system starts in state s ∈ 𝒮. First, problem (2.15) and the CLR problem (2.8)

are equivalent; this connection was originally observed by [58]. To see this, for each

𝑚 set 𝒜𝑚 = {0, 1}, where 1 indicates that bandit 𝑚 is activated and 0 indicates that

it is not activated, and plug in the following choices of D𝑚(·) and b for the coupling

constraint in equation (2.7):

D𝑚(𝑎𝑚) =

⎡⎣ I{𝑎𝑚 = 1}

−I{𝑎𝑚 = 1}

⎤⎦ , b =

⎡⎣ 1

−1

⎤⎦ . (2.16)

This coupling constraint requires that exactly one bandit be activated. It is then

easy to see that the dual CLR problem (2.9) exactly coincides with problem (2.15),

leading to the following result.

Proposition 8 For each s ∈ 𝒮, 𝑍*
𝐶𝐿𝑅(s) = 𝑍*

𝐵𝑁𝑀(s).

It turns out that problem (2.15) and the ALR problem (2.11) for the problem as

defined in Section 2.5.1 are in fact the same, in that they lead to the same objective

value.

Proposition 9 For each s ∈ 𝒮, 𝑍*
𝐴𝐿𝑅(s) = 𝑍*

𝐵𝑁𝑀(s).

The proof (found in Section A.1.9 of Appendix A) consists of showing that the optimal

solution of one can be used to construct a feasible solution for the other. An immediate

corollary of this result and Theorem 3 is that the finite fluid formulation bound 𝑍*
𝑇 (s)

is at least as tight as the performance region bound 𝑍*
𝐵𝑁𝑀(s).ă

Corollary 3 For each s ∈ 𝒮 and 𝑇 ∈ {1, 2, . . . }, 𝑍*
𝑇 (s) ≤ 𝑍*

𝐵𝑁𝑀(s).

Combining Theorem 2 and Propositions 4, 8 and 9, we obtain the following corollary

which summarizes the ordering of all bounds for this problem.

58

Corollary 4 For the bandit problem defined in Section 2.5.1, for all s ∈ 𝒮 and

𝑇 ∈ {1, 2, . . . }:

𝐽*(s) ≤ 𝑍*
𝑇 (s) ≤ · · · ≤ 𝑍*

2(s) ≤ 𝑍*
1(s) ≤ 𝑍*

𝐴𝐿𝑂(s) = 𝑍*
𝐴𝐿𝑅(s) = 𝑍*

𝐶𝐿𝑅(s) = 𝑍*
𝐵𝑁𝑀(s).

In Sections 2.5.4, we will show that the inequality between 𝑍*
𝑇 (s) and the four equiv-

alent bounds – 𝑍*
𝐴𝐿𝑂(s), 𝑍*

𝐴𝐿𝑅(s), 𝑍*
𝐶𝐿𝑅(s) and 𝑍*

𝐵𝑁𝑀(s) – can be strict.

Since the fluid formulation provides a bound that is at least as tight as the per-

formance region formulation, it would seem reasonable to expect that the heuristic

policy derived from the fluid formulation to give performance that is generally as good

as, if not better than, that of the primal dual heuristic derived from the performance

region formulation in [19]. In Section 2.5.5, we will show that this is indeed the case,

and that in fact the fluid-based heuristic significantly outperforms the primal dual

heuristic of [19].

2.5.4 Bound comparison

We begin the discussion of our numerical results by comparing the bound generated

by our fluid optimization model to the bound generated by the ALR on medium-scale

instances. For the fluid approach, we considered 𝑇 values of 1, 5 and 10; for values

of 𝑇 > 10, the metric values changed negligibly relative to 𝑇 = 10.

We set the number of bandits 𝑀 to 5 and the number of states of each bandit 𝑛

to 4, resulting in 54 = 1024 system states. In each bandit state space, we number the

states from 1 to 𝑛, i.e., 𝒮𝑚 = {1, 2, . . . , 𝑛}. We generated four different sets of five

instances, with the following structure:

∙ REG.SAR, consisting of regular multiarmed bandits, where the reward 𝑔𝑚𝑘𝑚

was set as 𝑔𝑚𝑘𝑚 = (10/𝑛) · 𝑘 for every bandit 𝑚 and state 𝑘. Each active

transition probability vector was drawn uniformly from the (𝑛−1)-dimensional

unit simplex.

∙ RSTLS.SAR, consisting of restless bandits, with the same reward structure as

59

REG.SAR. Each active and passive transition probability vector was drawn

uniformly from the (𝑛− 1)-dimensional unit simplex.

∙ RSTLS.SBR, consisting of restless bandits, where the active reward 𝑔𝑚𝑘𝑚 was

set as 𝑔𝑚𝑘𝑚 = (10/𝑛) · 𝑘 for every 𝑚 and 𝑘, and the passive reward 𝑔𝑚𝑘𝑎 for

𝑎 ̸= 𝑚 was set to 𝜌𝑚𝑘 , where 𝜌𝑚𝑘 = (1/𝑀) · (10/𝑛) · 𝑘 for each 𝑚 and 𝑘. Each

active and passive transition probability vector was drawn uniformly from the

(𝑛− 1)-dimensional unit simplex.

∙ RSTLS.DET.SBR, consisting of restless bandits, where the reward structure is

the same as RSTLS.SBR. Each active and passive transition probability ma-

trix was generated by permuting the rows of the 𝑛-dimensional identity matrix

uniformly at random (i.e., transition matrices are still randomly generated, but

the transitions that they govern are now deterministic).

The reason for considering the types of reward structures in sets REG.SAR,

RSTLS.SAR, RSTLS.SBR and RSTLS.DET.SBR is that in these sets of instances,

the reward structures of any two bandits are identical, but they are different in their

probabilistic structure. In order for a method to be successful, therefore, it must be

able to recognize that the bandits are different in their probabilistic structure, which

will directly affect the long-term expected reward that the method could possibly

garner from each bandit. We would expect that the greedy method, which only uses

reward information, would perform rather poorly on these instances. RSTLS.SAR

and RSTLS.SBR are interesting to consider together because passive rewards are zero

in the former and non-zero in the latter. RSTLS.DET.SBR is interesting as it is not

stochastic and thus constitutes a potentially pathological instance set.

To compare the bounds, we define three different metrics as follows. Given a

method ℎ for solving the problem that is based on an optimization formulation,

let 𝑍ℎ(s) be the objective value (upper bound) generated at s. Define RDℎ(s) =

100%×(𝑍ℎ(s)−𝐽*(s))/𝐽*(s) as the relative difference between 𝑍ℎ(s) and the optimal

value function 𝐽*(s). Then, define the metrics 𝒪mean,ℎ, 𝒪𝑃,ℎ and 𝒪max,ℎ as the mean,

𝑃 th percentile and maximum of {RDℎ(s)}s∈𝒮 . In general, the lower the values of

60

the 𝒪 metrics, the closer the bound is to the true optimal value function; a value of

zero for 𝒪mean,ℎ implies that the bound/objective value is exactly equal to the true

optimal value function. We will consider these metrics for the fluid and the ALR

formulations. We compute the optimal value function 𝐽* using value iteration.

Tables 2.2 and 2.3 compare the objective values obtained from the fluid formu-

lation and from the ALR problem (2.11) with the optimal objective value. We only

show the first instance from each set, as the results for the other instances in each

instance set were qualitatively similar. Recall that by Theorem 2, Proposition 8 and

Proposition 9 that the ALR problem (2.11), the CLR problem (2.8), the ALO prob-

lem (2.5) and the performance region problem (2.15) all yield the same objective value

for a fixed initial state s. We can see that for every instance and every discount factor,

the objective values from the fluid formulation are closer to the optimal objective than

those from the ALR and by extension, those from the ALO, CLR and performance

region formulations. We can also see that although part (b) of Theorem 3 indicates

that the fluid bound does not worsen as 𝑇 increases, there is negligible improvement

beyond the 𝑇 = 5 to 𝑇 = 10 range. This suggests that we can obtain substantially

better state-wise bounds than the ALR formulation by solving only a modestly larger

LO problem.

2.5.5 Large scale bandit results

So far, we have focused on bandit problems that are relatively small and have com-

pared the bounds from the different methods. In this section, we compare the policy

performance of the methods on larger instances, where the optimal value function is

unavailable to us and where we must resort to simulation. We consider instances that

are generated in the same way as the RSTLS.DET.SBR set of the previous section,

for values of 𝑀 in {5, 10, 15, 20} and values of 𝑛 in {5, 10, 20}. We restrict ourselves

to a discount factor of 𝛽 = 0.99 and simulate the system for 500 steps. We consider

the fluid heuristic with 𝑇 values of 1, 2, 5 and 10, the ALR approach, the primal

dual heuristic of [19] and the greedy heuristic (which activates the arm that leads to

the highest immediate reward). For the ALR approach, we re-solve it at each new

61

Set Instance 𝛽 Method (ℎ) 𝒪mean,ℎ 𝒪95,ℎ 𝒪max,ℎ

REG.SAR 1 0.5 Fluid, 𝑇 = 1 1.3511 2.7801 4.3253
Fluid, 𝑇 = 5 0.4161 0.8019 1.2562
Fluid, 𝑇 = 10 0.4015 0.7976 1.2562
ALR 2.0973 5.2572 7.0816

0.9 Fluid, 𝑇 = 1 1.8020 3.9777 6.7438
Fluid, 𝑇 = 5 0.6383 1.2568 1.9959
Fluid, 𝑇 = 10 0.3879 0.6368 0.6997
ALR 2.5094 5.4317 8.7091

0.95 Fluid, 𝑇 = 1 0.7311 1.7283 2.7162
Fluid, 𝑇 = 5 0.2679 0.6317 0.9857
Fluid, 𝑇 = 10 0.1518 0.2938 0.3639
ALR 0.9774 2.2040 3.4264

0.99 Fluid, 𝑇 = 1 0.0334 0.0862 0.1391
Fluid, 𝑇 = 5 0.0132 0.0343 0.0556
Fluid, 𝑇 = 10 0.0081 0.0170 0.0224
ALR 0.0436 0.1063 0.1708

RSTLS.SAR 1 0.5 Fluid, 𝑇 = 1 2.9222 5.2561 6.8915
Fluid, 𝑇 = 5 2.6406 4.1177 5.2122
Fluid, 𝑇 = 10 2.6406 4.1177 5.2122
ALR 4.5558 10.0487 52.7464

0.9 Fluid, 𝑇 = 1 4.7079 5.6050 6.5985
Fluid, 𝑇 = 5 4.5995 5.1573 5.5452
Fluid, 𝑇 = 10 4.5995 5.1573 5.5452
ALR 5.4381 8.3128 13.6692

0.95 Fluid, 𝑇 = 1 4.8905 5.3635 5.8881
Fluid, 𝑇 = 5 4.8336 5.1322 5.3391
Fluid, 𝑇 = 10 4.8336 5.1322 5.3391
ALR 5.2499 6.6973 9.2057

0.99 Fluid, 𝑇 = 1 5.0305 5.1297 5.2383
Fluid, 𝑇 = 5 5.0187 5.0810 5.1239
Fluid, 𝑇 = 10 5.0187 5.0810 5.1239
ALR 5.1015 5.3931 5.8688

Table 2.2: Objective value results (in %) for infinite horizon experiment, 𝑀 = 5,
𝑛 = 4, for instance 1 of sets REG.SAR and RSTLS.SAR. In each instance, value of
𝛽 and metric, the best value is indicated in bold.

62

Set Instance 𝛽 Method (ℎ) 𝒪mean,ℎ 𝒪95,ℎ 𝒪max,ℎ

RSTLS.SBR 1 0.5 Fluid, 𝑇 = 1 1.1795 2.0612 3.2705
Fluid, 𝑇 = 5 1.1426 1.8816 2.4596
Fluid, 𝑇 = 10 1.1426 1.8816 2.4596
ALR 2.5059 8.1574 27.8741

0.9 Fluid, 𝑇 = 1 2.1639 2.5757 2.7914
Fluid, 𝑇 = 5 2.1286 2.4244 2.6105
Fluid, 𝑇 = 10 2.1286 2.4244 2.6105
ALR 2.6231 4.3336 6.5445

0.95 Fluid, 𝑇 = 1 2.2758 2.4911 2.6111
Fluid, 𝑇 = 5 2.2564 2.4104 2.5125
Fluid, 𝑇 = 10 2.2564 2.4104 2.5125
ALR 2.5039 3.3414 4.3872

0.99 Fluid, 𝑇 = 1 2.3645 2.4090 2.4350
Fluid, 𝑇 = 5 2.3604 2.3927 2.4140
Fluid, 𝑇 = 10 2.3604 2.3927 2.4140
ALR 2.4099 2.5735 2.7749

RSTLS.DET.SBR 1 0.5 Fluid, 𝑇 = 1 0.5910 3.2775 7.7156
Fluid, 𝑇 = 5 0.0403 0.2744 0.6560
Fluid, 𝑇 = 10 0.0152 0.0664 0.6012
ALR 1.7255 7.8925 23.0435

0.9 Fluid, 𝑇 = 1 0.6112 2.2488 3.5360
Fluid, 𝑇 = 5 0.0975 0.4078 1.4104
Fluid, 𝑇 = 10 0.0816 0.3973 1.4104
ALR 1.0275 3.3645 4.6934

0.95 Fluid, 𝑇 = 1 0.4020 1.3776 2.1960
Fluid, 𝑇 = 5 0.0662 0.3673 0.9590
Fluid, 𝑇 = 10 0.0609 0.3446 0.9590
ALR 0.5910 1.8808 2.6698

0.99 Fluid, 𝑇 = 1 0.1102 0.3352 0.5066
Fluid, 𝑇 = 5 0.0223 0.0995 0.2475
Fluid, 𝑇 = 10 0.0158 0.0984 0.2475
ALR 0.1497 0.3972 0.5404

Table 2.3: Objective value results (in %) for infinite horizon experiment, 𝑀 = 5,
𝑛 = 4, for instance 1 of sets RSTLS.SBR and RSTLS.DET.SBR. In each instance,
value of 𝛽 and metric, the best value is indicated in bold.

63

state s, and take the action that is greedy with respect to the value function approx-

imation V. Note that we do not consider the policy that is greedy with respect to

the value function approximation from the ALO formulation (2.5) since by part (b)

of Theorem 2, any value function approximation that is optimal for the ALR (2.11)

is a value function approximation that is optimal for the ALO (2.5), and vice versa.

Similarly, we do not consider the policy that arises from the CLR formulation (2.8),

since by Propositions 8 and 8, the CLR and ALR formulations are equivalent for this

problem.

To compare the methods, for each pair (𝑀,𝑛), we generate 𝐾 = 100 random initial

states s(1), . . . , s(𝐾) by uniformly selecting one of the 𝑛 states for each component. We

simulate each policy ℎ from each initial state s(𝑘) to obtain a realized reward 𝐽𝑘,ℎ.

We also compute the initial objective value 𝑍𝑘,ℎ of the policy ℎ (where applicable)

at each initial state. For each initial state s(𝑘) and method ℎ, we thus obtain a gap

value 𝐺𝑘,ℎ, defined as

𝐺𝑘,ℎ = 100%× 𝑍*
𝑘 − 𝐽𝑘,ℎ
𝑍*

𝑘

where 𝑍*
𝑘 = minℎ 𝑍𝑘,ℎ is the lowest upper bound available (in this set of experiments,

this is the fluid method with the largest value of 𝑇). We then consider the mean value

of {𝐺𝑘,ℎ}𝐾𝑘=1 for each method ℎ, which we report as 𝐺mean,ℎ. In addition, for each

initial state s(𝑘) and method ℎ based on a mathematical optimization formulation, we

compute the relative difference 𝑈𝑘,ℎ between the upper bound from ℎ and the best

upper bound, defined as

𝑈𝑘,ℎ = 100%× 𝑍𝑘,ℎ − 𝑍*
𝑘

𝑍*
𝑘

,

and we compute the mean over the 𝐾 initial states as 𝑈mean,ℎ. Finally, for each

initial state s(𝑘) and each method ℎ that is based on an optimization formulation,

we compute 𝑇𝑘,ℎ, which is the average solution time in seconds of the underlying

formulation over all of the steps of the simulation. We then consider the mean value

of {𝑇𝑘,ℎ}𝐾𝑘=1 for each applicable method ℎ, which we report as 𝑇mean,ℎ.

Tables 2.4 and 2.5 display the results from this collection of instances. With regard

to policy performance, the results indicate that the fluid method delivers excellent

64

performance, even in the most challenging instance (𝑀 = 20, 𝑛 = 20), and signif-

icantly outperforms the greedy heuristic, the Lagrangian relaxation approach and

the primal dual heuristic. From a solution time perspective, the finite fluid formula-

tion (2.3) does take considerably more time per action than either the performance

region formulation (2.15) or the ALR formulation (2.11). However, even in the largest

case (𝑀 = 20, 𝑛 = 20) and for the largest value of 𝑇 , the average time per action is

on the order of 2.6 seconds; for certain applications, this amount of time may still be

feasible.

2.6 Conclusion

In this chapter, we have considered a fluid optimization approach for solving decom-

posable MDPs. The essential feature of the approach is that it models the transitions

of the system at the level of individual components; in this way, the approach is

tractable and scalable. We provided theoretical justification for this approach by

showing that it provides tighter bounds on the optimal value than three state-of-

the-art approaches. We showed computationally that this approach leads to strong

performance in multiarmed bandit problems.

There are several promising directions for future research. It would be valuable

to extend the approach to deal with situations where the data (e.g., the transition

probabilities) are not known precisely and may become known more precisely with

time. Problems of this kind fall in the domain of robust optimization (see [15]) and

it would seem that an adaptable robust version of the fluid formulation could be

appropriate in this setting. At the same time, problems of this kind could also be

viewed as reinforcement learning problems. One approach from this direction could

involve combining the fluid approach with posterior sampling (see, e.g., [83]): in this

approach, one would maintain a distribution over the problem data and at each period,

one would take a sample from this distribution, solve the fluid problem corresponding

to the sample to determine the action to take and update the distribution with the

realized reward and transitions from that action. Exploring the benefits of such a

65

Instance 𝛽 Method (ℎ) 𝐺mean,ℎ SE 𝑈mean,ℎ SE 𝑇mean,ℎ SE

𝑀 = 5, 𝑛 = 5 0.99 Fluid, 𝑇 = 1 10.3367 (0.352) 0.2319 (0.009) 0.002 (0.00)
Fluid, 𝑇 = 2 6.4168 (0.016) 0.1870 (0.008) 0.002 (0.00)
Fluid, 𝑇 = 5 4.0224 (0.008) 0.0976 (0.006) 0.006 (0.00)
Fluid, 𝑇 = 10 4.2265 (0.062) 0.0000 (0.000) 0.016 (0.00)
Greedy 24.9822 (0.255) – – – –
ALR 9.2136 (0.079) 0.2858 (0.009) 0.003 (0.00)
BNMPD 31.6512 (1.407) 0.2858 (0.009) 0.001 (0.00)

𝑀 = 5, 𝑛 = 10 0.99 Fluid, 𝑇 = 1 4.6314 (0.117) 0.1898 (0.008) 0.003 (0.00)
Fluid, 𝑇 = 2 4.4024 (0.120) 0.1530 (0.007) 0.003 (0.00)
Fluid, 𝑇 = 5 2.7667 (0.039) 0.0664 (0.004) 0.009 (0.00)
Fluid, 𝑇 = 10 2.7258 (0.032) 0.0000 (0.000) 0.033 (0.00)
Greedy 21.1001 (0.395) – – – –
ALR 13.0486 (0.377) 0.2389 (0.010) 0.007 (0.00)
BNMPD 31.9437 (0.690) 0.2389 (0.010) 0.002 (0.00)

𝑀 = 5, 𝑛 = 20 0.99 Fluid, 𝑇 = 1 7.4533 (0.190) 0.2898 (0.011) 0.005 (0.00)
Fluid, 𝑇 = 2 6.7666 (0.079) 0.2254 (0.009) 0.005 (0.00)
Fluid, 𝑇 = 5 5.8754 (0.171) 0.1166 (0.006) 0.014 (0.00)
Fluid, 𝑇 = 10 5.2519 (0.192) 0.0000 (0.000) 0.056 (0.00)
Greedy 22.2220 (0.334) – – – –
ALR 18.3783 (0.194) 0.3557 (0.012) 0.013 (0.00)
BNMPD 36.8163 (0.724) 0.3557 (0.012) 0.004 (0.00)

𝑀 = 10, 𝑛 = 5 0.99 Fluid, 𝑇 = 1 3.4065 (0.152) 0.0860 (0.005) 0.006 (0.00)
Fluid, 𝑇 = 2 1.6663 (0.147) 0.0596 (0.004) 0.008 (0.00)
Fluid, 𝑇 = 5 1.0393 (0.068) 0.0209 (0.002) 0.032 (0.00)
Fluid, 𝑇 = 10 1.0984 (0.085) 0.0000 (0.000) 0.091 (0.00)
Greedy 10.2405 (0.406) – – – –
ALR 8.4630 (0.578) 0.1218 (0.007) 0.008 (0.00)
BNMPD 34.9582 (1.601) 0.1218 (0.007) 0.002 (0.00)

𝑀 = 10, 𝑛 = 10 0.99 Fluid, 𝑇 = 1 1.8662 (0.117) 0.1611 (0.007) 0.010 (0.00)
Fluid, 𝑇 = 2 1.4467 (0.066) 0.1263 (0.006) 0.013 (0.00)
Fluid, 𝑇 = 5 1.4348 (0.095) 0.0532 (0.003) 0.056 (0.00)
Fluid, 𝑇 = 10 1.4386 (0.107) 0.0000 (0.000) 0.150 (0.00)
Greedy 18.4851 (0.334) – – – –
ALR 16.0600 (0.873) 0.1902 (0.007) 0.022 (0.00)
BNMPD 34.3912 (1.470) 0.1902 (0.007) 0.003 (0.00)

𝑀 = 10, 𝑛 = 20 0.99 Fluid, 𝑇 = 1 2.8752 (0.130) 0.3040 (0.010) 0.018 (0.00)
Fluid, 𝑇 = 2 2.5045 (0.090) 0.2722 (0.011) 0.023 (0.00)
Fluid, 𝑇 = 5 2.1928 (0.060) 0.1579 (0.009) 0.088 (0.00)
Fluid, 𝑇 = 10 1.8246 (0.061) 0.0000 (0.000) 0.313 (0.00)
Greedy 22.6095 (0.223) – – – –
ALR 26.9484 (0.416) 0.3488 (0.011) 0.068 (0.00)
BNMPD 40.5795 (0.381) 0.3488 (0.011) 0.004 (0.00)

Table 2.4: Large scale policy performance and runtime simulation results for 𝑀 ∈
{5, 10}, 𝑛 ∈ {5, 10, 20} RSTLS.DET.SBR instances. (SE indicates standard error.)

66

Instance 𝛽 Method (ℎ) 𝐺mean,ℎ SE 𝑈mean,ℎ SE 𝑇mean,ℎ SE

𝑀 = 15, 𝑛 = 5 0.99 Fluid, 𝑇 = 1 0.7693 (0.030) 0.0359 (0.003) 0.020 (0.00)
Fluid, 𝑇 = 2 0.7681 (0.032) 0.0172 (0.002) 0.028 (0.00)
Fluid, 𝑇 = 5 0.7015 (0.013) 0.0039 (0.001) 0.143 (0.00)
Fluid, 𝑇 = 10 0.7001 (0.013) 0.0000 (0.000) 0.218 (0.00)
Greedy 9.1309 (0.216) – – – –
ALR 4.3748 (0.428) 0.0523 (0.004) 0.022 (0.00)
BNMPD 28.2468 (0.800) 0.0523 (0.004) 0.002 (0.00)

𝑀 = 15, 𝑛 = 10 0.99 Fluid, 𝑇 = 1 2.2354 (0.054) 0.1176 (0.006) 0.025 (0.00)
Fluid, 𝑇 = 2 1.5200 (0.023) 0.0931 (0.005) 0.036 (0.00)
Fluid, 𝑇 = 5 1.3230 (0.006) 0.0355 (0.003) 0.137 (0.00)
Fluid, 𝑇 = 10 1.1694 (0.004) 0.0000 (0.000) 0.533 (0.00)
Greedy 11.8774 (0.160) – – – –
ALR 21.4492 (0.302) 0.1443 (0.006) 0.091 (0.00)
BNMPD 34.4392 (0.535) 0.1443 (0.006) 0.004 (0.00)

𝑀 = 15, 𝑛 = 20 0.99 Fluid, 𝑇 = 1 2.1894 (0.081) 0.2589 (0.010) 0.046 (0.00)
Fluid, 𝑇 = 2 2.0305 (0.040) 0.2312 (0.011) 0.062 (0.00)
Fluid, 𝑇 = 5 1.7992 (0.032) 0.1106 (0.006) 0.217 (0.00)
Fluid, 𝑇 = 10 1.6754 (0.036) 0.0000 (0.000) 1.170 (0.00)
Greedy 13.2699 (0.106) – – – –
ALR 14.6558 (0.174) 0.2893 (0.011) 0.354 (0.00)
BNMPD 37.7471 (0.626) 0.2893 (0.011) 0.005 (0.00)

𝑀 = 20, 𝑛 = 5 0.99 Fluid, 𝑇 = 1 1.1169 (0.045) 0.0554 (0.004) 0.056 (0.00)
Fluid, 𝑇 = 2 0.8508 (0.008) 0.0318 (0.003) 0.058 (0.00)
Fluid, 𝑇 = 5 0.7976 (0.004) 0.0065 (0.001) 0.148 (0.00)
Fluid, 𝑇 = 10 0.7953 (0.004) 0.0000 (0.000) 0.418 (0.00)
Greedy 9.9393 (0.228) – – – –
ALR 8.2415 (0.916) 0.0816 (0.005) 0.043 (0.00)
BNMPD 30.1071 (0.724) 0.0816 (0.005) 0.003 (0.00)

𝑀 = 20, 𝑛 = 10 0.99 Fluid, 𝑇 = 1 2.6674 (0.039) 0.1360 (0.005) 0.076 (0.00)
Fluid, 𝑇 = 2 2.6459 (0.032) 0.1104 (0.005) 0.069 (0.00)
Fluid, 𝑇 = 5 1.5767 (0.025) 0.0416 (0.003) 0.278 (0.00)
Fluid, 𝑇 = 10 1.3553 (0.024) 0.0000 (0.000) 1.206 (0.01)
Greedy 9.7231 (0.106) – – – –
ALR 12.4764 (0.206) 0.1632 (0.006) 0.203 (0.00)
BNMPD 33.3620 (0.786) 0.1632 (0.006) 0.004 (0.00)

𝑀 = 20, 𝑛 = 20 0.99 Fluid, 𝑇 = 1 5.1385 (0.105) 0.1918 (0.007) 0.086 (0.00)
Fluid, 𝑇 = 2 3.3105 (0.085) 0.1614 (0.006) 0.100 (0.00)
Fluid, 𝑇 = 5 1.5725 (0.039) 0.0822 (0.004) 0.487 (0.00)
Fluid, 𝑇 = 10 1.2369 (0.026) 0.0000 (0.000) 2.657 (0.01)
Greedy 11.2028 (0.134) – – – –
ALR 11.9748 (0.090) 0.2238 (0.007) 0.089 (0.00)
BNMPD 36.2378 (0.759) 0.2238 (0.007) 0.005 (0.00)

Table 2.5: Large scale policy performance and runtime simulation results for 𝛽 = 0.99,
𝑀 ∈ {15, 20}, 𝑛 ∈ {5, 10, 20} RSTLS.DET.SBR instances. (SE indicates standard
error.)

67

scheme, as well as other ways of combining the fluid method with reinforcement

learning methods, thus constitutes another interesting direction of future work.

68

Chapter 3

Robust product line design

3.1 Introduction

A product line is a collection of products that are variations of a single basic product,

differing with respect to certain attributes. Firms offer product lines to account for

heterogeneity in consumer preferences. For example, consider a producer of breakfast

cereals. The basic product may be a type of cereal (e.g., corn flakes), and a product

line may consist of versions of this cereal that differ with respect to attributes such

as the size of the cereal box, the flavor, whether the cereal has low fat content,

whether it has low calorie content, whether it is nutritionally enriched with certain

vitamins, what its retail price is, and so on. The customers of this cereal company

may include: weight-conscious adults, who may prefer healthy versions of the cereal;

college students, who may prefer certain flavors and larger packages (with lower cost

per unit weight); or fitness-oriented adults, who may prefer enriched cereal that has

added vitamins and minerals in smaller packages and who may be willing to pay more

than other customers. In this case, it is clear that there is no single cereal product that

would be highly desirable for all three groups. Rather, it would be more appropriate

to introduce several versions of the cereal that, taken together, would appeal to all

three categories of customers.

The problem of product line design (PLD) is to select the attributes of the products

comprising the product line so as to maximize the revenue that will result from the

69

different types of preferences within the customer population. This problem is one of

vital importance to the success of a firm. Much research effort has been devoted to

both modeling and solving the PLD problem.

The key prerequisite to practically all existing PLD approaches is a choice model,

which specifies the probability that a random customer selects one of the products

in the product line or opts to not purchase any of them, given the set of products

that is offered. Almost all approaches to PLD tacitly assume that this choice model

is known precisely and is beyond suspicion. In practice, however, this is not the case.

Typically the firm can only estimate the model from data that is obtained via conjoint

analysis, wherein a small number of customers from the overall customer population

is asked to either rate or choose from different hypothetical products. As such, the

firm may face significant uncertainty in the choice model. This uncertainty can be of

two types:

1. Parameter uncertainty. For a given parametric choice model that fits the

data, the firm may be uncertain about the true parameter values (e.g., the

partworths and the segment probabilities), due to the small sample size of the

data. The concept of parameter uncertainty and the question of how to make

decisions under parameter uncertainty have been well-studied in the operations

research community in other applications (we survey some of the relevant liter-

ature in Section 3.2) but have received little attention in the context of product

line decisions.

2. Structural uncertainty. For the given conjoint data, the firm may be uncer-

tain about the right type of parametric model to use to describe the customer

population (e.g., a first-choice model or a latent-class multinomial logit model).

This type of uncertainty is conceptually different from parameter uncertainty,

where the focus is restricted to a single type of model. The concept of struc-

tural uncertainty is a new one that was recently proposed and studied in [20]

in the context of designing screening policies for prostate cancer under different

models of the evolution of a patient’s health. To the best of our knowledge,

70

this type of uncertainty has not been considered previously in the context of

product line decisions.

Uncertainty is of significant interest because the optimal product line can change

dramatically as one considers different parameter values or different structures of the

choice model. Moreover, a product line that is designed for a particular choice model

may result in very different revenues if the realized choice model is different from the

planned one.

The issue of uncertainty becomes even more significant when one considers the

nature of product line decisions. A firm’s decision of which products to offer is one

that is made infrequently; in most cases, the decision to produce a particular collection

of products is one that commits the firm’s manufacturing, marketing and operational

resources and cannot be easily reversed or corrected. This relative lack of recourse,

along with the strategic importance of the decision, underscores the need for a product

line design approach that is immunized to the uncertainty in the underlying choice

model.

In this chapter, we propose a new optimization approach for product line design

that addresses uncertainty in customer choice. Rather than finding the product line

that maximizes the revenue under a single, nominal choice model, we propose a robust

optimization approach where we specify a set of possible models – the uncertainty set

– and find the product line that optimizes the worst-case expected revenue, where

the worst-case is taken over all of the models in the uncertainty set. We make the

following contributions:

1. We propose a new type of PLD problem that accounts for choice model uncer-

tainty using robust optimization. Our approach is flexible in that it is compati-

ble with many existing, popular choice models – such as the first-choice model,

the latent class multinomial logit (LCMNL) model and the hierarchical Bayes

mixture multinomial logit (HB-MMNL) model – and we propose different types

of uncertainty sets that account for both parametric and structural uncertainty.

We also discuss how to trade-off nominal and worst-case revenue by optimizing

71

a weighted combination of the two types of revenues.

2. We demonstrate the value of our approach through computational experiments

using a real conjoint data set. In particular:

∙ We consider parameter uncertainty in the first-choice model, the LCMNL

model and the HB-MMNL model. We show that the nominal product

line under each of these types of models is highly vulnerable to parameter

uncertainty, and that the robust product line provides a significant edge in

the worst case. For example, for the LCMNL model with 𝐾 = 3 customer

segments, the revenue of the nominal product line drops by over 10% in

the worst-case, while the robust product line leads to worst-case revenues

that are 4% higher than the nominal product line.

∙ We consider structural uncertainty through two examples. In the first

example, we consider an uncertainty set of LCMNL models where the

models vary in terms of the number of segments 𝐾; here, we find that

the nominal product line under any one LCMNL model can result in a

worst-case revenue that is lower by 3 to 7%, while the robust product line

outperforms the nominal product lines in the worst-case by 2 to 4%. In the

second example, we consider an uncertainty set that consists of LCMNL

models and the FC model. Here we find that the LCMNL models and the

FC model lead to strikingly different product lines, and the product line

that is optimal for each individual model is highly suboptimal under the

other models. In contrast, the robust product line that accounts for all

of the structurally distinct models outperforms each nominal product line

under the worst-case model.

The rest of the chapter is organized as follows. In Section 3.2, we review the exist-

ing literature on product line design. In Section 3.3, we describe our PLD approach

to address uncertainty in customer choice. In Section 3.4, we present extensive com-

putational evidence that both highlights the need to account for uncertainty and the

72

benefits of adopting our approach to address uncertainty. Finally, in Section 3.5, we

conclude the chapter and discuss some possible directions for future work.

3.2 Literature review

To date, significant research has been conducted in solving the PLD problem. The

majority of approaches to the PLD problem model it as an integer optimization

problem and assume a first-choice model of customer behavior; examples include [98],

[54], [71], [42], [65] and [43]. The approaches differ in whether the procedure selects the

product line from a predefined set of products (“product space” procedures; examples

include [54, 71, 42, 43]) or whether the procedure directly prescribes the attributes and

is not restricted to a predefined set (“attribute space” procedures; examples include

[98, 65]). The approaches also differ in the solution method. For example, [98] and

[71] solve their respective PLD problems exactly as integer optimization problems,

while [54] consider several heuristics including a greedy heuristic and [65] consider a

dynamic programming-based heuristic. For a comprehensive comparison of heuristics

for the nominal first-choice PLD problem, the reader is referred to the paper of [9].

Apart from the first-choice model, other product line research has considered prob-

abilistic choice models, such as the multinomial logit (MNL) model, where customers

do not deterministically select their highest-utility choice, but rather they randomly

select from all of their choices; typically, options with higher utilities are selected more

frequently. Examples of product line approaches built on probabilistic choice models

include [33], [67], [85] and [86]. In [33], the authors consider the problem of selecting

a product line from a finite set of products to maximize expected revenue under the

MNL model. Although the problem belongs to the class of mixed-integer nonlinear

optimization problems, which are typically very difficult to solve, the paper shows

that due to the problem structure it is sufficient to solve the continuous relaxation

to obtain an optimal solution to the original problem. [85] builds on this modeling

approach to incorporate price discrimination for different customer segments, while

[86] further extends the approach to more general attraction models. [67] consider a

73

share-of-surplus choice model, where the probability of a segment selecting a product

is the ratio of the surplus of that product to the total surplus over all of the products.

The problem they formulate is a mixed-integer nonlinear optimization problem which

they solve with a combination of simulated annealing and steepest ascent. [67] also

additionally address uncertainty in the utilities by modeling the uncertain utilities

as random variables and applying a heuristic that attempts to optimize the expected

profit. Outside of the academic literature, Sawtooth Software’s Advanced Simula-

tion Module (ASM) [84] allows analysts to perform simulations and to find product

lines that optimize one of a number of objectives (such as market share or revenue)

with respect to different choice models. These choice models include the first-choice

model, the multinomial logit model and the “randomized first-choice” (RFC) model.

The RFC model is a type of probabilistic choice model, wherein one simulates many

customers who choose according to the first-choice rule with a randomly generated

utility function; the product utilities are altered for each customer by perturbing

the partworths (“attribute error”) and then perturbing the utility of each product

(“product error”).

The approach we propose in this chapter differs from the extant PLD literature

in two main ways. First, existing approaches to the PLD problem under the first-

choice model and under probabilistic choice models assume that the choice model

that describes the customer population is known precisely. For example, in the first-

choice model, it is assumed that we precisely know the segments comprising the

customer population along with their partworths and sizes. As discussed earlier,

typically the parameter values that define the choice model may not be known with

complete certainty. As we will show later, product lines that do not account for

errors in the parameter values that define the choice model can lead to significantly

lower revenues when the realized parameter values are different from their planned

values. To the best of our knowledge, no other work has highlighted the importance

of accounting for parameter uncertainty in PLD or proposed a PLD approach that

directly accounts for this uncertainty. Closest in spirit to some of the analyses we

conduct is part of the paper of [9], where the authors present a post-hoc test of

74

how robust the product lines are with respect to error in the partworth utilities.

In this experiment, the firm observes partworths that are perturbed from the true

partworths (to simulate measurement error) and designs the product line under the

perturbed partworths; the authors show that in this setting, the realized revenues

are 2-5% lower than their anticipated values due to this measurement error. In this

chapter, we consider uncertainty more generally over a wide range of choice models

(the first-choice model, the LCMNL model and the HB-MMNL model) and propose

an approach that accounts for uncertainty upfront; as such, our work complements

this existing set of results. With regard to the RFC model implemented in Sawtooth

Software’s ASM, we emphasize that the RFC model addresses randomness in choice in

the same way that other probabilistic choice models do; attribute error is analogous to

assuming a probability distribution over partworths (as in the LCMNL model, which

assumes a discrete mixture distribution or the HB-MMNL model which assumes a

multivariate normal mixture distribution) and product error is analogous to utility

error in a random utility framework (as in the multinomial logit model, which assumes

standard Gumbel errors, or the multinomial probit model, which assumes normally

distributed errors). The RFC model does not address uncertainty in a worst-case

way, as we do in this chapter.

Second, virtually all existing approaches to the PLD problem focus on a single

parametric structure for the choice model. In contrast, our approach is also designed

to accommodate structural uncertainty and account for multiple parametric struc-

tures. The motivation for this setting is that often we may not be able to isolate a

single parametric model as the “best” model, but instead we may have a collection of

models that are “good enough” and that could all plausibly describe how the customer

population will respond to the product line. The danger of optimizing for a single

model is that we do not take the other models into consideration: while the single

model product line will guarantee the optimal revenue under the chosen model, it is

not guaranteed to deliver good performance under any of the other models. Thus, in

our approach, rather than using a single model, we account for all of the models by

optimizing a product line with respect to worst-case revenue over the set of models.

75

In this way, the product line is able to guarantee good performance over a range of

models, rather than only guaranteeing good performance for a single model. To the

best of our knowledge, the idea of optimizing for a set of structurally distinct models

has not been proposed in the PLD literature.

Outside of the PLD literature, our treatment of parameter uncertainty is closely

aligned with the large body of work within the operations research community on

robust optimization [15]. Robust optimization is a technique for optimization under

uncertainty, where one wishes to solve an optimization problem that is affected by un-

certainty either through its constraints or its objective function. Robust optimization

has been successfully applied in a variety of domain areas to address parameter un-

certainty, including inventory management [22], portfolio optimization [21, 51], power

system operations [17], cancer treatment [26] and facility location decisions [6, 32].

The only application of robust optimization techniques to a problem involving para-

metric choice models that we know of is the paper of [82]. In this paper, the authors

consider the problem of assortment optimization – a problem closely related to PLD

– under the multinomial logit model with uncertain utilities. The authors develop

theoretical results that show that the problem can be solved efficiently. Our work

contrasts with this work in that it does not exploit specific structural properties of

a specific robust optimization problem to propose a tailored solution approach, but

rather, it proposes a generic approach that allows for robustness to be incorporated

under a wide variety of choice models.

Our treatment of structural uncertainty was inspired by the paper of [20]. The

paper considers the problem of selecting a prostate cancer screening strategy to max-

imize a patient’s expected quality adjusted life years. This problem is made difficult

by the existence of three distinct, yet clinically recognized, models of how a patient’s

health evolves under different screening strategies. To reconcile these different mod-

els, the authors propose optimizing a weighted combination of the worst-case patient

outcome and the average outcome over the three models. The authors show that the

resulting screening strategy leads to good outcomes under all three models and is su-

perior to the single-model screening strategies in both its worst-case and average-case

76

performance. The results in this chapter complement those in [20] by showing that

this idea can have significant impact in product line decisions.

3.3 Model

3.3.1 Nominal model

Let 𝑛 be the number of different attributes of the product. We assume, for simplicity,

that each attribute is a binary attribute, i.e., either the product possesses the attribute

or not. (This assumption is without loss of generality, as attributes with more than

two levels can be modeled by, for example, introducing a binary attribute for each

level of the original attribute and requiring that the product only possesses one of the

binary attributes.) A product is then a binary vector a = (𝑎1, 𝑎2, . . . , 𝑎𝑛). We let 𝑁

denote the number of candidate products and we index these products from 1 to 𝑁 ;

for 𝑝 ∈ {1, . . . , 𝑁}, a𝑝 indicates the attribute vector that encodes product 𝑝.

We assume that the marginal revenue of product 𝑝 is given by 𝑟(𝑝). To model the

market, we assume that each customer makes exactly one choice: he either chooses

one of the products in the product line, or he chooses a “no-purchase” option, which

corresponds to not purchasing a product from the product line (e.g., because of the

existence of a more desirable product by a competing firm). The purchasing behavior

of customers is described by a choice model 𝑚; the quantity 𝑚(𝑖 |𝑆) denotes the

probability that the customer selects product 𝑖 when offered the product line 𝑆 ⊆

{1, . . . , 𝑁}. We use the index 0 to indicate the no-purchase option, so that 𝑚(0 |𝑆)

denotes the probability that the customer does not purchase any of the products in

𝑆. The expected revenue of product line 𝑆 is then given by

𝑅(𝑆;𝑚) =
∑︁
𝑖∈𝑆

𝑚(𝑖 |𝑆) · 𝑟(𝑖). (3.1)

Let 𝑃 be the number of products that are to compose the product line (the “width”

of the product line). We assume that 𝑃 is predefined by the firm and is not a decision

77

variable. The nominal product line design problem can then be stated as

maximize
𝑆⊆{1,...,𝑁}:|𝑆|=𝑃

𝑅(𝑆;𝑚). (3.2)

In words, this is the problem of finding a product line 𝑆 consisting of 𝑃 products

from the universe of products {1, . . . , 𝑁} that leads to the highest possible expected

revenue under the choice model 𝑚.

There are many possible choices for the choice model 𝑚; we present three examples

below.

1. First-choice. We assume that there are finitely many customer types; let 𝐾

denote the number of customer types. We assume that 𝐾 is pre-defined by the

firm and is not a decision variable. We let 𝜆𝑘 denote the probability that a

random customer is of type 𝑘. We thus have that
∑︀𝐾

𝑘=1 𝜆
𝑘 = 1 and 𝜆𝑘 ≥ 0 for

all 𝑘 ∈ {1, . . . , 𝐾}. For each customer type 𝑘 ∈ {1, . . . , 𝐾}, we let 𝑢𝑘(𝑝) denote

the utility of product 𝑝 ∈ {1, . . . , 𝑁} and we let 𝑢𝑘(0) denote the utility of the

no-purchase option for type 𝑘. We assume that the utilities are unique: if 𝑝 ̸= 𝑝′,

then 𝑢𝑘(𝑝) ̸= 𝑢𝑘(𝑝′), i.e., two products cannot have the same utility. Such an

assumption is helpful in ensuring that the first-choice model is well-defined.

Given that the products are defined by discrete attributes, this assumption is

not particularly restrictive.

With these definitions, the choice probability 𝑚(𝑖 |𝑆) can be defined as

𝑚(𝑖 |𝑆) =
𝐾∑︁
𝑘=1

𝜆𝑘 · I
{︂
𝑖 = arg max

𝑗∈𝑆∪{0}
𝑢𝑘(𝑗)

}︂
, (3.3)

and the expected revenue 𝑅(𝑆;𝑚) is just

𝑅(𝑆;𝑚) =
∑︁
𝑖∈𝑆

(︃
𝐾∑︁
𝑘=1

𝜆𝑘 · I
{︂
𝑖 = arg max

𝑗∈𝑆∪{0}
𝑢𝑘(𝑗)

}︂)︃
· 𝑟(𝑖). (3.4)

We assume (as is commonly done in conjoint analysis) that the utility of a

78

product 𝑝 is a linear function of its attributes, that is,

𝑢𝑘(𝑝) =
𝑛∑︁

𝑖=1

𝑢𝑘
𝑖 · 𝑎

𝑝
𝑖 (3.5)

where 𝑢𝑘
𝑖 is the partworth utility of attribute 𝑖 for customer type 𝑘. We will use

u to denote the vector of attribute partworths, i.e., u𝑘 = (𝑢𝑘
1, . . . , 𝑢

𝑘
𝑛).

2. Latent class multinomial logit. We now define the latent class multinomial

logit (LCMNL) model. As in the first-choice model, we assume that there are 𝐾

customer segments. A customer belongs to segment 𝑘 with probability 𝜆𝑘. Each

product 𝑝 ∈ {1, . . . , 𝑁} provides some utility 𝑢𝑘(𝑝) to customers in segment 𝑘

and as before, we assume that 𝑢𝑘(0) is the utility of the no-purchase option.

The choice probability 𝑚(𝑖 |𝑆) is then given by

𝑚(𝑖 |𝑆) =
𝐾∑︁
𝑘=1

𝜆𝑘 · exp(𝑢𝑘(𝑖))∑︀
𝑖′∈𝑆 exp(𝑢𝑘(𝑖′)) + exp(𝑢𝑘(0))

(3.6)

and the expected revenue under 𝑚 is given by

𝑅(𝑆;𝑚) =
∑︁
𝑖∈𝑆

𝐾∑︁
𝑘=1

𝜆𝑘 · 𝑟(𝑖) · exp(𝑢𝑘(𝑖))∑︀
𝑖′∈𝑆 exp(𝑢𝑘(𝑖′)) + exp(𝑢𝑘(0))

. (3.7)

As in the first-choice model, we will assume that the utility 𝑢𝑘(𝑝) is a linear

function of the attributes of product 𝑝 (cf. equation (3.5)) and use u to denote

the vector of attribute partworths, i.e., u𝑘 = (𝑢𝑘
1, . . . , 𝑢

𝑘
𝑛).

3. Mixture multinomial logit. In the mixture multinomial logit (MMNL)

model, we assume that customers choose according to an MNL model, where

the partworth vector u = (𝑢1, . . . , 𝑢𝑛) is distributed according to some mixture

distribution 𝐹 . The choice probabilities are then given by

𝑚𝐹 (𝑖 |𝑆) =

∫︁
exp(𝑢(𝑖))∑︀

𝑖′∈𝑆 exp(𝑢(𝑖′)) + exp(𝑢(0))
𝑑𝐹 (u), (3.8)

where 𝑢(𝑖) is the utility of product 𝑖 under the partworth vector u. Note that

79

when 𝐹 is a distribution with discrete support, the choice model reduces to the

LCMNL model (3.6). It is common to assume that u is normally distributed

with mean 𝛽 and covariance matrix V. Thus, given 𝛽 and V, the corresponding

choice probability can be written as

𝑚𝛽,V(𝑖 |𝑆) =

∫︁
exp(𝑢(𝑖))∑︀

𝑖′∈𝑆 exp(𝑢(𝑖′)) + exp(𝑢(0))
· 𝜑(u;𝛽,V) 𝑑u, (3.9)

where 𝜑(·;𝛽,V) is the density function of a multivariate normal random variable

with mean 𝛽 and covariance matrix V.

Assuming a mixture distribution that is a multivariate normal, there are two

approaches to estimating 𝛽 and V. The first approach is based on expectation

maximization (see [93, 92]), which produces point estimates of 𝛽 and V. The

second approach, which is more popular in marketing science and is more widely

used in practice, is based on a hierarchical Bayes (HB) formulation of the model

[4, 78, 79]. In the HB approach, 𝛽 and V are treated as random variables with

prior distributions, and the goal is to compute the posterior distributions of 𝛽

and V given the available choice data from a conjoint analysis of a group of

respondents. One of the most common specifications of the parameter priors

(see [4, 79]) is given by

𝛽 ∼ 𝑁(𝛽̄, 𝛼V), (3.10a)

V ∼ 𝐼𝑊 (𝑣0,V0), (3.10b)

where 𝑁(𝜇,Σ) indicates a multivariate normal distribution with mean 𝜇 and

covariance matrix Σ and 𝐼𝑊 (𝜈,W) indicates the inverse Wishart distribution

with degrees of freedom 𝜈 and scale matrix W. Typically the parameters of the

priors of 𝛽 and V are specified to ensure that the priors are relatively diffuse. In

what follows, we will use HB-MMNL to denote the hierarchical Bayes MMNL

model.

Letting Ψ denote the posterior joint probability density function of (𝛽,V), it

80

is common to compute the posterior mean of the choice probability 𝑚𝛽,V(𝑖 |𝑆)

(i.e., by integrating 𝑚𝛽,V(𝑖 |𝑆) over Ψ), and to use this as the choice probability:

𝑚(𝑖 |𝑆) =

∫︁ ∫︁
exp(𝑢(𝑖))∑︀

𝑖′∈𝑆 exp(𝑢(𝑖′)) + exp(𝑢(0))
· 𝜑(u;𝛽,V) ·Ψ(𝛽,V) 𝑑u 𝑑𝛽 𝑑V.

For most choice models 𝑚, the nominal PLD model (3.2) is a difficult optimization

problem. For example, with the first-choice model, it is known that problem (3.2) is

NP-Hard [65]. However, there exist many heuristics for solving problem (3.2) that are

able to find high quality solutions in practical runtimes [9]. One such heuristic is the

“divide-and-conquer” heuristic [55]. In this heuristic, the product line is broken into

groups of attributes, and the procedure sequentially optimizes each group of attributes

to improve the objective function. We follow [9]’s implementation of this heuristic

in treating each product as a group of attributes; thus, the procedure changes the

product line one product at a time until the revenue cannot be improved any further.

Algorithm 2 provides a pseudocode description of the heuristic. This heuristic is

guaranteed to determine a locally optimal product line, but is not guaranteed to find

a globally optimal product line. However, [9] showed that this heuristic is able to

quickly deliver very high quality solutions in the first-choice PLD problem, where

quality was measured relative to the true optimal solution.

3.3.2 Robust model

In the nominal PLD problem (3.2), we optimize the expected per-customer revenue

with respect to the choice model 𝑚. In doing so, we tacitly assume that this choice

model is known precisely; that is, the choice model 𝑚 that we plan for in problem (3.2)

is exactly the choice model that will be realized when the product line is offered to

the market. In reality, however, we normally do not know the choice model precisely

and 𝑚 is thus only an estimate of the true probability distribution; in keeping with

the nomenclature of robust optimization, 𝑚 is the nominal choice model. This un-

certainty constitutes a significant risk to the firm. If the nominal choice model 𝑚 is

not accurate and the probability distribution that is realized is different from 𝑚, then

81

Algorithm 2 Divide-and-conquer heuristic for the nominal PLD problem (3.2).
Require: Choice model 𝑚, width of product line 𝑃 , initial product line 𝑆

Set isLocalOptimal = false
while ¬ isLocalOptimal do

for all 𝑝 ∈ 𝑆 do
Set 𝒮𝑝 = {𝑆 ′ 𝑆 ′ = 𝑆 ∪ {𝑝′} ∖ {𝑝} for some 𝑝′ ∈ {1, . . . , 𝑁} ∖ 𝑆}
Set 𝑆*

𝑝 = arg max𝑆∈𝒮𝑝 𝑅(𝑆;𝑚)
if 𝑅(𝑆*

𝑝 ;𝑚) > 𝑅(𝑆;𝑚) then
Set 𝑆 = 𝑆*

𝑝

break
end if

end for
if 𝑅(𝑆*

𝑝 ;𝑚) ≤ 𝑅(𝑆;𝑚) for each 𝑝 ∈ 𝑆 then
Set isLocalOptimal = true

end if
end while
return 𝑆

the revenue that is realized from the product line may be significantly lower than the

anticipated revenue.

In this section, we propose an approach that directly accounts for the uncertainty

in 𝑚. Rather than assuming that 𝑚 is the true choice model, we can instead assume

that we know a set of modelsℳ, called the uncertainty set, which we believe contains

the true choice model. This set may consist of models with the same parametric

structure but different parameters, or models that have entirely different parametric

structures; we discuss ways to constructℳ in more detail in Section 3.3.3. Withℳ

in hand, we proceed as follows: rather than solving a nominal optimization problem

where we maximize the expected per-customer revenue with respect to the nominal

𝑚, we instead solve a robust optimization problem where we maximize the worst-case

expected per-customer revenue, where the worst case is taken over all the possible

choice models 𝑚̃ in the uncertainty setℳ. Mathematically, the worst-case expected

revenue of a product line 𝑆 is defined as

𝑅(𝑆;ℳ) = min
𝑚̃∈ℳ

𝑅(𝑆; 𝑚̃). (3.11)

i.e., the worst-case expected per-customer revenue is the minimum of the expected

82

per-customer revenue over the possible choice models inℳ. It is helpful to think of 𝑚̃

as being controlled by an adversary (“nature”) that wishes to reduce the expected per-

customer revenue that the decision maker garners; given the freedom to choose any

𝑚̃ fromℳ, nature will select the one that makes the expected per-customer revenue

the lowest. For further background in robust optimization, the reader is referred to

the review paper of [15].

The robust product line design problem can then be defined as

maximize
𝑆⊆{1,...,𝑁}:|𝑆|=𝑃

𝑅(𝑆;ℳ). (3.12)

Note that, like the nominal PLD problem (3.2), the robust PLD problem (3.12) is

still in general a difficult problem to solve to provable optimality. However, many

of the same heuristics that are available for solving the nominal PLD problem (3.2)

can be used to solve this problem. In particular, we can use the divide-and-conquer

heuristic (Algorithm 2) to solve the problem, where we replace evaluations of the nom-

inal objective function 𝑅(·;𝑚) with evaluations of the worst-case objective function

𝑅(·;ℳ).

Before we describe the possible forms of the uncertainty set ℳ, it is worthwhile

to highlight three important aspects of the robust model. First, we would like to

provide some further motivation for the objective in problem (3.12). The objec-

tive function (3.11) still considers the expected revenue of the product line, but unlike

the nominal objective function (3.1), it considers the worst-case expected profit of the

product line, where the worst-case is taken over the uncertainty setℳ of choice mod-

els. As discussed in Section 3.2, this contrasts with existing approaches to the PLD

problem, all of which consider maximizing expected revenue or market share under a

single, nominal choice model. The reason for taking our view is that each model in

ℳ represents a plausible outcome with regard to how the customer population might

react to the product line and thus, for a product line 𝑆, the set {𝑅(𝑆; 𝑚̃) 𝑚̃ ∈ ℳ}

represents a set of possible outcomes in terms of the expected per-customer revenue.

Different product lines will differ in terms of the set of possible revenue outcomes

83

0.0

0.1

0.2

50 55 60 65
Revenue

D
en

si
ty Solution

Product Line A
Product Line B

Figure 3-1: Hypothetical illustration of revenue distributions under two different
product lines.

they induce. A low revenue outcome may have significant negative consequences for

the firm’s financial viability and its perceived performance. Thus, rather than en-

suring a good average revenue outcome over the models inℳ, the firm may wish to

ensure a good revenue outcome under the least favorable model. To illustrate this,

consider Figure 3-1, which displays the hypothetical expected per-customer revenue

distributions induced by a set of choice modelsℳ for two different product lines. The

dashed vertical line indicates a target value for the expected per-customer revenue.

Here, we can see that while product line A ensures a better average performance over

the models in ℳ than product line B, there are many outcomes where the revenue

under product line A is below the target revenue, as indicated by the much heavier

tail below the target revenue. Thus, in this setting, product line B may be more

desirable to the firm than product line A. This is the typical behavior observed when

comparing nominal and robust product lines (here, product line A’s revenue distri-

bution is representative of that of a nominal product line, while product line B is

representative of the robust product line).

The second aspect concerns how the solutions of the nominal problem (3.2) and the

robust problem (3.12) relate to each other in terms of expected per-customer revenue.

84

Let 𝑆N be an optimal collection of products for the nominal problem (3.2) and let 𝑆R

be an optimal collection of products for the robust problem (3.12) with uncertainty

set ℳ. Then it follows that the worst-case expected per-customer revenue of the

robust solution is always at least as good as the worst-case expected per-customer

revenue of the nominal solution, that is,

𝑅(𝑆R;ℳ) ≥ 𝑅(𝑆N;ℳ).

To see this, observe that 𝑆N is a feasible solution for problem (3.12); since 𝑆R is an

optimal solution for problem (3.12), it follows that 𝑆N cannot have a higher value of

𝑅(· ; ℳ) as this would contradict the optimality of 𝑆R for problem (3.12). A similar

result follows in the other direction with respect to the nominal expected per-customer

revenue: the nominal expected per-customer revenue of the nominal solution is always

at least as good as the nominal expected per-customer revenue of the robust solution,

that is,

𝑅(𝑆R;𝑚) ≤ 𝑅(𝑆N;𝑚).

In summary: the robust solution will perform better than the nominal solution in the

worst case, while the nominal solution will perform better than the robust solution

in the nominal case.

The third aspect of the robust model that is important to consider is the form and

the size of the uncertainty set. As the size of the uncertainty set ℳ increases, the

minimization in (3.11) is taken over a larger set, and thus the corresponding solution

of problem (3.12) will ensure the best worst-case performance over a larger set of

possible values of 𝑚̃. However, as the uncertainty set increases in size, typically the

performance of the robust solution in the nominal case degrades. Thus, there is a

tradeoff in selecting the uncertainty set: if the set is too large and contains values of 𝑚̃

that are significantly different from the nominal value of 𝑚, then the robust solution

will be protected against these values (relative to the nominal solution), but at the

cost of performance under the nominal value of 𝑚. On the other hand, if the set is

too small, then the robust solution will have better performance under the nominal

85

value of 𝑚, but will be vulnerable to extreme values of 𝑚̃.

3.3.3 Choices of the uncertainty set

We now discuss some ways that we may generate the uncertainty setℳ.

1. Finite set of variations of a single model. Suppose that we fix a given type

of model – for example, a latent-class multinomial logit model with 𝐾 classes.

We may then generate 𝐵 different versions of the same type of model, leading

to the uncertainty set

ℳ = {𝑚1, . . . ,𝑚𝐵}.

These variations of could be generated in a number of ways:

(a) Bootstrapping. We may generate 𝐵 bootstrapped samples of the con-

joint data by sampling with replacement from the respondents in the data

set. We can then run the estimation procedure of our desired model class

on the choice data of each bootstrapped sample, thus generating 𝐵 differ-

ent models.

(b) Posterior sampling. Bayesian models like HB will furnish us with a pos-

terior distribution of a parameter 𝜃 that specifies the model. For example,

in the MMNL model in equation (3.9), the underlying model is specified

by the mean and covariance matrix pair (𝛽,V). In a Bayesian setting, the

parameter 𝜃 is unknown, and our uncertainty in this parameter is captured

in the posterior distribution of 𝜃 given the available choice data. To form

ℳ, we may therefore take 𝐵 independent samples from the posterior dis-

tribution of 𝜃 – say, 𝜃1, . . . ,𝜃𝐵 – and set each 𝑚𝑏 to be the choice model

with parameter 𝜃𝑏.

(c) Multiple models from the estimation procedure. It may be the case

that the estimation procedure generates multiple models from the same

data. For example, the expectation maximization (EM) procedure [40],

86

which is the typical estimation method of choice for latent-class multino-

mial logit models and other popular discrete choice models, may converge

to 𝐵 different local minima given different initial starting points that are

similar in their log likelihood.

2. Continuous set of variations of a single model. Rather than considering

a finite collection of 𝐵 different versions of the same model, we may want to

consider sets where one or more parameters that define the model vary contin-

uously within some set. Letting 𝜃 denote the parameter, Θ denote the set of

possible values of 𝜃 and 𝑚𝜃 denote the model that corresponds to 𝜃,ℳ will be

defined as

ℳ = {𝑚𝜃 𝜃 ∈ Θ}

and correspondingly, 𝑅(𝑆;ℳ) will be defined as

𝑅(𝑆;ℳ) = min
𝑚̃∈ℳ

𝑅(𝑆; 𝑚̃)

= min
𝜃∈Θ

𝑅(𝑆;𝑚𝜃). (3.13)

In the previous choice of the uncertainty set ℳ, where the uncertainty set ℳ

consists of finitely many models, the worst-case revenue 𝑅(𝑆;ℳ) can be easily

computed: simply compute 𝑅(𝑆;𝑚) under each of the finitely many models 𝑚

in ℳ and take the minimum of this set of 𝐵 values. In contrast, when the

uncertainty set ℳ consists of infinitely many models, the function 𝑅(𝑆;ℳ)

may not be easy to evaluate. As shown above in equation (3.13), the difficulty

of computing 𝑅(𝑆;ℳ) depends on how hard it is to optimize 𝑅(𝑆;𝑚𝜃) as a

function of the parameter 𝜃 over the set of possible parameter values Θ.

One broad case where 𝑅(𝑆;ℳ) is easy to compute is when 𝑅(𝑆;𝑚𝜃) is a linear

function of 𝜃 and Θ is a polyhedron (that is, a set defined by finitely many linear

equalities and inequalities on 𝜃). In this case, 𝑅(𝑆;ℳ) can be computed by

solving a linear optimization problem, which is a theoretically tractable problem;

this can also be done efficiently in practice provided that the dimension of 𝜃 and

87

the number of constraints defining Θ are not too large. An example of such a

case is when we consider uncertainty in customer type probabilities in the first-

choice model. More concretely, we assume that the customer type probability

distribution 𝜆̃ is uncertain and belongs to some polyhedral set Λ. Letting 𝑚𝜆̃

denote the first-choice model with probability distribution 𝜆̃, we can write

𝑅(𝑆;ℳ) = min
𝜆̃∈Λ

𝑅(𝑆;𝑚𝜆̃)

= min
𝜆̃∈Λ

𝐾∑︁
𝑘=1

𝜆̃𝑘

(︃∑︁
𝑖∈𝑆

I{𝑖 = arg max
𝑗∈𝑆∪{0}

𝑢𝑘(𝑗)} · 𝑟(𝑖)

)︃
. (3.14)

In equation (3.14), we can see that the function being minimized is linear in 𝜆

and thus computing 𝑅(𝑆;ℳ) amounts to solving a linear optimization problem.

We now present two choices for the parameter uncertainty set Λ:

(a) Box uncertainty set. We assume that for each segment 𝑘, 𝜆̃𝑘 is restricted

to lie between 𝜆𝑘 and 𝜆
𝑘. The box uncertainty set Λbox is then given by

Λbox =

⎧⎪⎪⎪⎨⎪⎪⎪⎩𝜆̃ ∈ R𝐾

𝜆𝑘 ≤ 𝜆̃𝑘 ≤ 𝜆
𝑘
, ∀ 𝑘 ∈ {1, . . . , 𝐾},

1𝑇 𝜆̃ = 1,

𝜆̃ ≥ 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.15)

(b) Aggregate deviation uncertainty set. A limitation of the box un-

certainty set is that the worst-case 𝜆̃ – that is, the 𝜆̃ that achieves the

worst-case revenue (3.14) – may be one where multiple 𝜆̃𝑘’s simultane-

ously take their most extreme values (either 𝜆𝑘 or 𝜆
𝑘). Such a 𝜆̃ may be

highly unlikely. Consequently, the resulting robust solution will sacrifice

performance on more likely 𝜆̃’s in order to be (unnecessarily) protected

against such extreme values of 𝜆̃.

An alternative uncertainty set that may be more appropriate, then, is one

that not only bounds how much each individual 𝜆𝑘 value deviates from

its nominal value, but that also bounds the aggregate deviation of the

𝜆𝑘 values from their nominal values. The resulting uncertainty set is the

88

aggregate deviation uncertainty set, which is defined as

ΛAD =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
𝜆̃ ∈ R𝐾

𝐾∑︁
𝑘=1

|𝜆̃𝑘 − 𝜆𝑘| ≤ Γ,

𝜆𝑘 ≤ 𝜆̃𝑘 ≤ 𝜆
𝑘
, ∀ 𝑘 ∈ {1, . . . , 𝐾},

1𝑇 𝜆̃ = 1,

𝜆̃ ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (3.16)

where
∑︀𝐾

𝑘=1 |𝜆̃𝑘 − 𝜆𝑘| is the aggregate deviation and Γ is a user-specified

bound on this deviation.

In the context of the first-choice model, one may ask if it is possible to account

for uncertainty in the partworths of the customer types through a continuous

uncertainty set. While it is possible, it turns out to be rather difficult. To

illustrate this difficulty, suppose that for each customer type 𝑘, the set 𝒰𝑘

denotes the uncertainty set for the partworth vector u𝑘. Let 𝑚u1,...,u𝐾 denote

the choice model corresponding to the partworth vectors u1, . . . ,u𝐾 . The worst-

case expected revenue is then

𝑅(𝑆;ℳ) = min
(ũ1,...,ũ𝐾)∈𝒰1×···×𝒰𝐾

𝑅(𝑆;𝑚ũ1,...,ũ𝐾)

= min
(ũ1,...,ũ𝐾)∈𝒰1×···×𝒰𝐾

𝐾∑︁
𝑘=1

𝜆𝑘

(︃∑︁
𝑖∈𝑆

I{𝑖 = arg max
𝑗∈𝑆∪{0}

𝑢̃𝑘(𝑗)} · 𝑟(𝑖)

)︃

=
𝐾∑︁
𝑘=1

𝜆𝑘 min
ũ𝑘∈𝒰𝑘

(︃∑︁
𝑖∈𝑆

I{𝑖 = arg max
𝑗∈𝑆∪{0}

𝑢̃𝑘(𝑗)} · 𝑟(𝑖)

)︃
. (3.17)

To compute the worst-case expected revenue in equation (3.17), one must com-

pute the minimum over each 𝒰𝑘 of the expression

∑︁
𝑖∈𝑆

I{𝑖 = arg max
𝑗∈𝑆∪{0}

𝑢̃𝑘(𝑗)} · 𝑟(𝑖).

The minimization for each customer type 𝑘 is in general a difficult problem

because the function being minimized is a non-convex function of u𝑘. For this

89

reason, in our computational experiments in Section 3.4, we will not consider

how to account for robustness under continuous partworth uncertainty.

3. Finite set of multiple structurally distinct models. Upon examining

some conjoint data, we may estimate a handful of models that are structurally

distinct but provide roughly the same quality of fit to the data – for example,

a first-choice model 𝑚𝐹𝐶 , a latent class multinomial logit model with three

segment 𝑚LC3 and a latent-class multinomial logit model with eight segments

𝑚LC8. The uncertainty set is then just the collection of these three models:

ℳ = {𝑚FC,𝑚LC3,𝑚LC8}.

3.3.4 Trading off nominal and robust performance

As presented in Sections 3.3.1 and 3.3.2, the firm is faced with a choice between two

alternative optimization paradigms: optimizing for the nominal choice model 𝑚 or

optimizing for the worst-case choice model among an uncertainty set ℳ. While the

first paradigm is undesirable in that it completely ignores uncertainty, the second

paradigm may also be unappealing in that it ignores what may be the most “likely”

model that describes the customer population.

One way to bridge the two extremes is to consider robustness as a constraint. In

this approach, one would find the product line that maximizes the nominal revenue

subject to a constraint that the worst-case revenue is no lower than some predefined

amount. Mathematically, this problem can be stated as

maximize
𝑆⊆{1,...,𝑁}:|𝑆|=𝑃

𝑅(𝑆;𝑚) (3.18a)

subject to 𝑅(𝑆;ℳ) ≥ 𝑅 (3.18b)

where 𝑅 is a desired lower bound on the worst-case revenue.

Although conceptually appealing, problem (3.18) comes with two practical chal-

lenges. First, as noted in Section 3.3.1, one can use heuristics to solve the robust PLD

90

problem (3.12) just as one can use them to solve the nominal PLD problem (3.2).

However, to solve the constrained problem (3.18), existing PLD heuristics would need

to be modified to ensure that the solution is feasible. With regard to the divide-and-

conquer heuristic, a possible modification would be to consider a two-phase approach:

in the first phase, we maximizes 𝑅(𝑆;ℳ) to try to find a feasible solution; then, as-

suming we have found such a feasible solution, we maximize 𝑅(𝑆;𝑚), taking care to

only consider those solutions that are feasible (i.e., satisfying constraint (3.18b)) in

each iteration.

Second, the firm may not have a single value of 𝑅 in mind, but rather may be

interested in seeing how the solution changes over a range of values of 𝑅, in order to

understand the trade-off between nominal and worst-case performance. An alterna-

tive way to proceed in this case is to consider optimizing a weighted combination of

the nominal and worst-case revenues, as follows:

maximize
𝑆⊆{1,...,𝑁}:|𝑆|=𝑃

(1− 𝛼) ·𝑅(𝑆;𝑚) + 𝛼 ·𝑅(𝑆;ℳ). (3.19)

Here, 𝛼 is a weight between 0 and 1 that determines how much the objective empha-

sizes the worst-case revenue/de-emphasizes the nominal revenue. Note that unlike

problem (3.18), problem (3.19) is an unconstrained problem that is amenable to ex-

isting PLD heuristics. By solving problem (3.19) for a range of values of 𝛼, it is

possible to determine a Pareto efficient frontier of solutions that optimally trade-off

worst-case revenue with nominal revenue.

3.4 Results

We now present the results of an extensive computational study with real conjoint

data that illustrate (1) the need to account for uncertainty in product line design and

(2) the benefits from adopting the approaches we prescribe. We begin by providing

the background on the problem data in Section 3.4.1. We then present the results of

several different experiments, which we summarize below:

91

∙ In Section 3.4.2, we consider how to account for uncertainty in customer type

probabilities/segment sizes in the first-choice model. We show that the revenue

of the nominal product line can deteriorate quite significantly in the presence

of uncertainty, while the robust product line outperforms the nominal product

line when both are exposed to moderate to high levels of uncertainty.

∙ In Section 3.4.3, we consider how to account for uncertainty in the LCMNL

model by constructing the uncertainty set using bootstrapping. We show that

the nominal product line under the LCMNL model is extremely susceptible

to uncertainty in the LCMNL model parameters and the robust product line

provides an edge over the nominal product line in the worst-case.

∙ In Section 3.4.4, we consider how to account for uncertainty in the HB-MMNL

model by constructing the uncertainty set using samples from the posterior dis-

tribution of the mean and covariance parameters. We consider nominal solutions

based on two different MMNL models – one using the posterior expectation of

the choice probabilities (cf. (3)) and one based on a point estimate of the mean

and covariance parameters – and we show that each one is outperformed by the

robust solution in the worst-case.

∙ In Section 3.4.5, we consider how to account for structural uncertainty within

the LCMNL model. Here, the structural uncertainty comes from the number

of segments 𝐾, which is unknown to the modeler. We show that when there

is uncertainty in the right value of 𝐾, committing to any one value of 𝐾 can

result in worst-case revenue losses ranging from 3 to 7% if the true value of

𝐾 is different. The robust product line, which does not assume a single value

of 𝐾 but protects against a range of values of 𝐾, improves on the worst-case

performance of the nominal product lines corresponding to the same range of

𝐾 values by an amount of approximately 2-4%.

∙ Finally, in Section 3.4.6, we consider structural uncertainty under multiple struc-

turally distinct models. The model uncertainty set consists of the first-choice

92

model and two different LCMNL models. We show here that the three nomi-

nal solutions lead to significantly lower revenues when a model with a different

structure is realized, with worst-case losses ranging from 23 to 37%. In contrast,

the robust approach is able to identify a product line that provides essentially

the same revenue under all three models, and improves on the worst-case rev-

enue of each nominal product line’s revenue by an amount ranging from 13 to

55%.

3.4.1 Background

For the experiments we conduct here, we use a real conjoint data set from the field

test of [91]. The field test from which the data set is derived is concerned with

understanding consumer preferences for a hypothetical laptop bag to be offered by

Timbuk2 (Timbuk2 Designs Inc., San Francisco, CA, USA). The data set consists of

responses from 330 respondents. The data set contains two relevant pieces of data:

1. Pairwise comparisons. As part of the conjoint study, each respondent was

required to compare 16 pairs of hypothetical laptop bags and indicate which

product was more preferred or whether the respondent was indifferent to the

choice.

2. Estimated partworth utilities for the first-choice model. Using the

pairwise comparison data, the data set provides estimates of each respondent’s

first-choice partworth vector using the analytic center method of [91]. We use

these partworths in our study of parameter uncertainty under the first-choice

model in Section 3.4.2 and our study of structural uncertainty in Section 3.4.6.

The hypothetical laptop bag has ten different attributes, including the price,

whether the bag has a handle and the color of the bag. We use the same revenue

structure as [9], which previously used the data set of [91] – in particular, we assume

the same marginal incremental revenues of [9]. We also assume, as in [9], that the

price varies from $70 to $100 in $5 increments.

93

We assume that the firm is interested in offering 𝑃 = 5 versions of the laptop bag.

As in [9], we assume that the no-purchase option involves the customer selecting one

of three alternative products offered by the competition: (1) a bare-bones bag that

includes no optional features and that is priced at $70; (2) a mid-range bag that has

five of the nine non-price features and is priced at $85; and (3) a high-end bag that

has all of the features and is priced at $100.

To solve each nominal and robust PLD problem, we execute the divide-and-

conquer heuristic described as Algorithm 2 from ten randomly chosen starting points,

with the appropriate objective function (either a nominal objective function 𝑅(𝑆;𝑚)

or a worst-case objective function 𝑅(𝑆;ℳ)), and use the solution with the best ob-

jective value.

Our code, with the exception of the HB-MMNL model, was implemented in the

Julia technical computing language [24]. All LCMNL models were estimated using a

custom implementation of the EM algorithm (see [92]). All HB-MMNL models were

estimated using the bayesm package in R [77].

In the experiments that follow, we will focus on two useful metrics for quantifying

the benefit of robustness. The first is the worst-case loss (WCL). The WCL is defined

for a nominal model 𝑚, a nominal product line 𝑆N and an uncertainty setℳ as

WCL(𝑆N,𝑚,ℳ) = 100%× 𝑅(𝑆N;𝑚)−𝑅(𝑆N;ℳ)

𝑅(𝑆N;𝑚)
.

The WCL measures how much the revenue of the nominal product line deteriorates

when one passes from the nominal revenue under 𝑚 to the worst-case revenue over

ℳ; in other words, it measures how vulnerable the product line is to the worst-case

model inℳ.

The second metric we will consider is the relative improvement (RI) of the robust

product line over the nominal product line. The RI is defined for a nominal product

line 𝑆N, a robust product line 𝑆R and an uncertainty setℳ as

RI(𝑆R, 𝑆N,ℳ) = 100%× 𝑅(𝑆R;ℳ)−𝑅(𝑆N;ℳ)

𝑅(𝑆N;ℳ)
.

94

The RI measures how much the robust product line improves on the nominal product

line in terms of the worst-case revenue, relative to the nominal product line’s worst-

case revenue.

3.4.2 Parameter robustness under the first-choice model

In this section, we demonstrate the importance of accounting for uncertainty in the

first-choice model.

We begin by defining the nominal model. We use the form of the model given by

equation (3.4), where we take each respondent in the data set to represent a customer

type. Thus, our first-choice model has 𝐾 = 330 customer types. We assume that

each customer type is equiprobable, i.e., 𝜆𝑘 = 1/𝐾. We use the estimated partworths

from [91] to form the utility function 𝑢𝑘(·) of each customer type 𝑘 ∈ {1, . . . , 𝐾}.

To model uncertainty, we will assume that the true probability distribution 𝜆 lies

in a box uncertainty set Λbox (cf. equation (3.15)) where the lower and upper bars 𝜆

and 𝜆 are parametrized by a scalar 𝜖 ≥ 0 in the following way:

𝜆𝑘 = (1− 𝜖) · 1

𝐾
, ∀ 𝑘 ∈ {1, . . . , 𝐾}, (3.20)

𝜆
𝑘

= (1 + 𝜖) · 1

𝐾
, ∀ 𝑘 ∈ {1, . . . , 𝐾}. (3.21)

For a given 𝜖, we indicate the corresponding box uncertainty set by Λbox,𝜖. Note

that in this setting, we can interpret Λbox,𝜖 as a set of different weightings of the

respondents. For example, with 𝜖 = 2, each respondent can have a weight 𝜆̃𝑘 as low

as 0 and as high as 3/𝐾 (i.e., the respondent is weighted three times as much as in

the nominal probability distribution 𝜆, where 𝜆𝑘 = 1/𝐾). Such an uncertainty set

could be used to guard against the possibility that some portion of the respondents

are outliers and not representative of the overall customer population.

We then proceed as follows. We solve the nominal PLD problem (3.2) to obtain

a nominal product line 𝑆N. Then, for a given value of 𝜖, we solve the robust PLD

problem (3.12), where the set of modelsℳ is induced by the uncertainty set Λbox,𝜖, to

obtain the robust product line 𝑆R,𝜖. For each 𝜖, we compute the WCL of the nominal

95

Uncertainty set Λbox,𝜖 𝑅(𝑆N;ℳ) ($) 𝑅(𝑆R,𝜖;ℳ) ($) WCL (%) RI (%)

𝜖 = 0.0 72.82 72.82 0.00 0.00
𝜖 = 0.1 71.92 71.92 1.23 0.01
𝜖 = 0.2 71.02 71.09 2.38 0.10
𝜖 = 0.5 68.31 69.12 5.08 1.19
𝜖 = 1.0 63.80 67.12 7.83 5.19
𝜖 = 2.0 60.70 65.46 10.11 7.83
𝜖 = 3.0 57.67 64.88 10.91 12.50
𝜖 = 4.0 55.46 64.47 11.47 16.24

Table 3.1: Worst-case loss of nominal solution and relative improvement of robust
solution over nominal solution for varying values of 𝜖.

product line 𝑆N and the RI of the robust product line corresponding to 𝜖 over the

one nominal product line.

Table 3.1 shows how WCL and RI vary for values of 𝜖 ∈ {0.1, 0.2, 0.5, 1, 2, 3, 4}.

We can see from this table that for small amounts of uncertainty (𝜖 < 0.5), the

revenue that is garnered under the nominal product line deteriorates moderately

(e.g., for 𝜖 = 0.2, the worst-case loss is 2.38%), and the robust product line provides

a slight edge. However, for moderate to large amounts of uncertainty (𝜖 ≥ 0.5), the

worst-case loss increases significantly and the robust product line provides an edge

over the nominal product line that grows as the amount of uncertainty increases.

For example, with 𝜖 = 2, the worst-case loss is 10.11%, and the robust product line

delivers a worst-case revenue that is 7.83% higher than that of the nominal product

line.

3.4.3 Parameter robustness under the LCMNL model

We now consider parameter robustness under the LCMNL model. In this set of ex-

periments, we proceed as follows. For a fixed number of customer classes 𝐾, we

estimate the nominal LCMNL model 𝑚 using the pairwise comparison data set from

all 330 respondents. Then, we generate a family of 𝐵 LCMNL models 𝑚1, . . . ,𝑚𝐵

by bootstrapping. Each bootstrapped model is estimated from a bootstrapped data

set that is generated by randomly sampling 330 respondents with replacement from

96

Num. segments 𝐾 𝑅(𝑆N;𝑚) ($) 𝑅(𝑆N;ℳ) ($) 𝑅(𝑆R;ℳ) ($) WCL (%) RI (%)

𝐾 = 1 67.97 64.15 64.49 5.62 0.53
𝐾 = 2 66.40 60.03 60.77 9.59 1.22
𝐾 = 3 65.34 58.06 60.49 11.14 4.17
𝐾 = 4 64.87 59.40 59.61 8.43 0.36
𝐾 = 5 64.90 55.86 58.82 13.93 5.30
𝐾 = 6 66.19 55.50 58.50 16.16 5.42
𝐾 = 7 64.87 56.22 58.85 13.34 4.68
𝐾 = 8 67.02 51.60 58.15 23.02 12.70
𝐾 = 9 65.14 54.54 57.96 16.28 6.27
𝐾 = 10 65.49 50.62 57.62 22.70 13.82

Table 3.2: Comparison of nominal and worst-case revenues for LCMNL model under
bootstrapping for 𝐾 ∈ {1, . . . , 10}.

the original set of 330 respondents. Note that by applying this procedure, the boot-

strapped models effectively allow us to account for the uncertainty in the segment

probabilities 𝜆1, . . . , 𝜆𝐾 and the segment-specific partworth vectors u1, . . . ,u𝐾 jointly.

We solve the nominal PLD problem (3.2) with the nominal model 𝑚 to obtain the

nominal product line 𝑆N. We set ℳ = {𝑚1, . . . ,𝑚𝐵} and solve the robust PLD

problem (3.12) withℳ to obtain the robust product line 𝑆R.

We consider values of 𝐾 ∈ {1, . . . , 10}. We consider 𝐵 = 100 bootstrapped

models. For each estimation (for the nominal model and the 𝐵 bootstrapped models),

we run the EM algorithm from five different randomly generated starting points, and

use the model with the highest log likelihood.

Table 3.2 compares the nominal revenues and the worst-case revenues over ℳ

of the two product lines for each value of 𝐾. We can see that under the worst-case

model from the bootstrapped collection of models, the realized revenue can deteriorate

significantly; for example, with 𝐾 = 5 segments, the expected per-customer revenue

is $64.90 in the nominal case and $55.86 in the worst-case, which is a loss of over

13%. Furthermore, we can see that in the worst-case, the robust product line is able

to offer a significant improvement over the nominal product line, ranging from 0.36%

(𝐾 = 4) to as much as 13.82% (𝐾 = 10).

To visualize the variability of revenues under each product line, Figure 3-2 plots

a smoothed histogram of the revenue under the nominal and robust product lines

97

0.00

0.05

0.10

0.15

0.20

55 60 65
Revenue

D
en

si
ty Solution

Nominal
Robust

Figure 3-2: Plot of revenues under nominal and robust product lines under boot-
strapped LCMNL models with 𝐾 = 8.

for 𝐾 = 8. The revenue distribution is formed by the 𝑀 bootstrapped models in

ℳ. We can see that the mean of the robust distribution is less than the mean of

the nominal distribution, but the robust distribution has a lighter tail to the left and

is more concentrated around its mean. Thus, if we believe that the bootstrapped

models inℳ are all models that could be realized, then the robust product line will

exhibit less risk than the nominal product line.

One interesting insight that emerges from Table 3.2 is that the relative improve-

ment is generally higher with higher values of 𝐾. This makes sense, as the estimated

parameter values of more complex models will be more sensitive to the underlying

data used to estimate the model. By bootstrapping the data, there will be more

variability in the family of modelsℳ, and the robust product line 𝑆R may therefore

offer a greater edge over the nominal product line 𝑆N in the worst-case. At the same

time, in practice, more complex models (LCMNL models with higher values of 𝐾)

may offer a better fit to the data than simpler models (LCMNL models with lower

values of 𝐾). Therefore, robustness will become more desirable if we believe that we

should use a large number of customer classes to describe our customer population.

We conclude our study of parametric robustness under the LCMNL model by

98

52

54

56

58

64 65 66 67
Nominal Revenue

W
or

st
−

ca
se

 R
ev

en
ue

Figure 3-3: Plot of approximate Pareto efficient frontier of solutions that trade-off
nominal revenue and worst-case revenue under the bootstrapped uncertainty set ℳ
for 𝐾 = 8.

illustrating the trade-off between nominal and worst-case revenues using the weighted

combination approach described Section 3.3.4. To demonstrate this, we focus on the

LCMNL model with 𝐾 = 8 and solve problem (3.19) for 𝛼 values in

{0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99}.

Figure 3-3 plots each solution of each 𝛼 value as a point in two-dimensional space,

where the 𝑥-axis indicates the nominal revenue of the solution and the 𝑦-axis indicates

the worst-case revenue over ℳ of the solution; the points are joined together by

straight lines to form an approximate Pareto efficient frontier of solutions that are

undominated in both nominal and worst-case revenue.

99

From Figure 3-3, we can see that there is a wide range of solutions between the

robust solution (top-left end of frontier) and nominal solution (bottom-right end of

frontier) and that the frontier suggests some profitable trade-offs. For example, we

can see that there exist solutions that are very similar to the nominal solution in terms

of nominal revenue but whose worst-case revenues are considerably higher. The main

takeaway from this plot is that by considering problem (3.19), the firm can evaluate

the range of solutions that are efficient with regard to nominal and worst-case revenue

and decide which point on the frontier is most desirable to them.

3.4.4 Parameter robustness under the HB-MMNL model

In this section, we consider how to incorporate robustness under the HB-MMNL

model using posterior sampling. We use the prior specification in equation (3.10)

for the priors of the mean 𝛽 and covariance matrix V. We obtain 𝐵 independent

samples (𝛽1,V1), . . . , (𝛽𝐵,V𝐵) from the posterior distribution of (𝛽,V). We obtain

these samples through Markov chain Monte Carlo (MCMC), using the bayesm package

in R [77]. We ran the MCMC procedure for 100,000 iterations with a burn-in period

of 50,000 iterations. Due to the high autocorrelation in the draws of the parameter

values, we thin the remaining draws to only retain every 200th draw. The last 𝐵 = 100

of the thinned draws of (𝛽,V) are used to form the set {(𝛽1,V1), . . . , (𝛽𝐵,V𝐵)}. We

use the default values provided by bayesm for the prior parameters in equation (3.10).

Ideally, we would like to consider the uncertainty setℳ that consists of 𝑚𝛽𝑏,V𝑏 , as

defined in equation (3.9), for each sample 𝑏 ∈ {1, . . . , 𝐵}. Unfortunately, each choice

model of the form 𝑚𝛽,V requires the evaluation of an integral of a multinomial logit

choice probability with respect to a multivariate normal density, which cannot be

computed in closed form. Thus, for each model 𝑚𝛽𝑏,V𝑏 , we approximate the integral

by drawing 𝑇 = 100 samples from the multivariate normal density with mean 𝛽𝑏 and

covariance matrix V𝑏; denoting the approximate choice model by 𝑚̂𝛽𝑏,V𝑏 , the choice

100

probability of an option 𝑖 given the product line 𝑆 is then just

𝑚̂𝛽𝑏,V𝑏(𝑖 |𝑆) =
𝑇∑︁
𝑡=1

1

𝑇

exp(𝑢𝑏,𝑡(𝑖))∑︀
𝑖′∈𝑆 exp(𝑢𝑏,𝑡(𝑖′)) + exp(𝑢𝑏,𝑡(0))

,

where 𝑢𝑏,𝑡(·) is the utility function corresponding to the 𝑡th sample of the partworth

vector u from the multivariate normal distribution corresponding to the 𝑏th posterior

sample. Our final uncertainty set is thus

ℳ = {𝑚̂𝛽1,V1 , . . . , 𝑚̂𝛽𝐵 ,V𝐵}.

We consider two types of nominal models. The first is the approximate posterior

expectation (PostExp) MMNL choice model, which is defined as

𝑚𝑃𝑜𝑠𝑡𝐸𝑥𝑝(𝑖 |𝑆) =
1

𝐵
·

𝐵∑︁
𝑏=1

𝑚̂𝛽𝑏,V𝑏(𝑖 |𝑆)

=
1

𝐵𝑇

𝐵∑︁
𝑏=1

𝑇∑︁
𝑡=1

exp(𝑢𝑏,𝑡(𝑖))∑︀
𝑖′∈𝑆 exp(𝑢𝑏,𝑡(𝑖′)) + exp(𝑢𝑏,𝑡(0))

,

The choice probabilities produced by 𝑚𝑃𝑜𝑠𝑡𝐸𝑥𝑝 can be viewed as approximations of

the true posterior expected choice probabilities given in equation (3). There are

two levels of approximation: the integral over the posterior density of 𝛽 and V is

approximated by the average of 𝐵 samples from that posterior density, while the

inner integral for each posterior sample is approximated by the average of 𝑇 samples

from the corresponding multivariate normal distribution.

The second nominal model we will consider is the approximate point estimate

MMNL choice model. Here, we obtain the approximate posterior mean of the mean

parameter 𝛽, given by 𝛽* = (1/𝐵) ·
∑︀𝐵

𝑏=1 𝛽
𝑏, and the covariance matrix, given by

V* = (1/𝐵) ·
∑︀𝐵

𝑏=1 V
𝑏. We then plug these point estimates into the definition of the

MMNL model in equation (3.9). Since the integral that defines the equation (3.9)

cannot be computed in closed form, we approximate the integral with 𝑇 = 100

samples from the corresponding multivariate normal density. Letting 𝑢*,𝑡(·) denote

101

Model 𝑚 𝑅(𝑆N,𝑚;𝑚) ($) 𝑅(𝑆N,𝑚;ℳ) ($) WCL (%) RI (%)

𝑚𝑃𝑜𝑖𝑛𝑡𝐸𝑠𝑡 61.33 54.88 10.52 6.25
𝑚𝑃𝑜𝑠𝑡𝐸𝑥𝑝 62.44 56.89 8.89 2.50

Table 3.3: Comparison of solutions under nominal HB models 𝑚𝑃𝑜𝑖𝑛𝑡𝐸𝑠𝑡 and 𝑚𝑃𝑜𝑠𝑡𝐸𝑥𝑝

to robust solution under uncertainty setℳ formed by posterior sampling.

the utility function corresponding to the 𝑡th sample from the multivariate normal

density with mean 𝛽* and covariance matrix V*, we define the approximate point

estimate (PointEst) MMNL choice model as

𝑚𝑃𝑜𝑖𝑛𝑡𝐸𝑠𝑡(𝑖 |𝑆) =
1

𝑇

𝑇∑︁
𝑡=1

exp(𝑢*,𝑡(𝑖))∑︀
𝑖′∈𝑆 exp(𝑢*,𝑡(𝑖′)) + exp(𝑢*,𝑡(0))

.

This approach of replacing the posterior distribution over 𝛽 and V by a point estimate

is sometimes referred to as the “plug-in” Bayes approach [78].

We optimize each of the resulting objective functions, 𝑅(·;ℳ), 𝑅(·;𝑚N,𝑃𝑜𝑠𝑡𝐸𝑥𝑝)

and 𝑅(·;𝑚N,𝑃𝑜𝑖𝑛𝑡𝐸𝑠𝑡), to obtain the product lines 𝑆R, 𝑆N,𝑚𝑃𝑜𝑠𝑡𝐸𝑥𝑝 and 𝑆N,𝑚𝑃𝑜𝑖𝑛𝑡𝐸𝑠𝑡 ,

respectively. For each nominal solution, we compute the worst-case loss (WCL) and

the relative improvement (RI) of the robust solution under the uncertainty setℳ.

Table 3.3 shows the nominal and worst-case revenue under ℳ of the nominal

product line under each of the two nominal HB models, as well as the WCL and RI

for each nominal product line. The worst-case revenue of the robust product line is

$58.31. From this table, we can see that the nominal product lines obtained using the

posterior expectation choice model 𝑚𝑃𝑜𝑠𝑡𝐸𝑥𝑝 and the point estimate model 𝑚𝑃𝑜𝑖𝑛𝑡𝐸𝑠𝑡

are highly susceptible to uncertainty as represented by the uncertainty setℳ, which

is informed by the posterior distribution of the partworth mean vector 𝛽 and the

covariance matrix V. At the same time, the robust solution is able to improve the

worst-case revenue under ℳ significantly in each case (more than 6% for the point

estimate model and by 2.5% for the posterior expectation model).

102

3.4.5 Structural robustness under different LCMNL models

One of the difficulties of using the LCMNL model in practice is that we do not know

a priori what the right number of customer segments 𝐾 is. To find the number of

segments, one typically estimates the LCMNL model for a range of values of 𝐾 and

then selects the “best” model from this set of models. What is meant by “best” is

usually a model that strikes a good balance between fit (as measured by the log likeli-

hood) and complexity (as measured by the number of parameters). While there exist

metrics such as the Akaike information criterion (AIC) [3], the Bayesian information

criterion (BIC) [87] or the consistent Akaike information criterion (CAIC) [28] that

one can use to quantify the quality of a model and to guide the selection of a best

model (e.g., select the model with the best AIC value), these metrics are not infallible

and can often lead to different choices of a best model. In the end, one may only be

able to delineate a set of “good” models as opposed to a single “best” model.

To illustrate this with the conjoint data set of [91], we estimate the LCMNL

model using the pairwise comparison data for different values of 𝐾 in {1, 2, . . . , 20}.

Figures 3-4 and 3-5 display the AIC and CAIC, respectively, against the number of

customer segments 𝐾. From Figure 3-5, we can see that the CAIC implies a choice

of 𝐾 of either 3 or 4. (The minimum CAIC is 6103.17 at 𝐾 = 3; the second lowest

is 6104.89 for 𝐾 = 4.) On the other hand, from Figure 3-4, we can see that AIC

continues decreasing as 𝐾 increases beyond 𝐾 = 3 until it begins to settle down,

starting at approximately 𝐾 = 12. Thus, based on the AIC, it would seem that

𝐾 = 12 would be a more appropriate choice. Based on these plots, we could conclude

that any value of 𝐾 between 3 and 12 is a reasonable value to select.

We now demonstrate how robustness can be used to counteract our uncertainty in

the number of segments in the LCMNL model. Given the plots of the AIC and CAIC

in Figures 3-4 and 3-5, we may decide that the number of segments 𝐾 should lie in

the range between 3 and 12. Thus, letting 𝑚LC𝐾 denote the fitted LCMNL model

with 𝐾 customer segments, we would define our uncertainty set to be

ℳ = {𝑚LC3,𝑚LC4, . . . ,𝑚LC12}.

103

5500

5700

5900

6100

6300

2 4 6 8 10 12 14 16 18 20
K

A
IC

Figure 3-4: AIC for 𝐾 ∈ {1, . . . , 20}.

6250

6500

6750

7000

2 4 6 8 10 12 14 16 18 20
K

C
A

IC

Figure 3-5: CAIC for 𝐾 ∈ {1, . . . , 20}.

We would then solve the robust problem (3.12) with ℳ to obtain a robust product

𝑆R. To compare this solution against the nominal approach, we solve the nominal

problem (3.2) for each 𝑚LC𝐾 ∈ ℳ to obtain a product line 𝑆N,𝐾 for each 𝐾 ∈

{3, . . . , 12}, and evaluate the worst-case revenue 𝑅(𝑆N,𝐾 ;ℳ) for each such product

line.

Table 3.4 provides the results of this comparison. The second column indicates

each nominal product line’s nominal revenue. The third column indicates each nomi-

nal product line’s worst-case revenue overℳ. The fourth column displays the relative

loss from the nominal to the worst-case revenue, while the fifth column displays the

improvement of the robust product line over each nominal product line with respect

to the worst-case revenue. The worst-case revenue 𝑅(𝑆R;ℳ) of the robust solution

𝑆R is $63.86.

From this table, we can see that the nominal product lines corresponding to

𝑚LC3, . . . ,𝑚LC12 are quite susceptible to uncertainty. This is visible from the val-

ues of the worst-case loss; the worst-case loss ranges from 3.33% (𝐾 = 7) to as much

as 7.01% (𝐾 = 8). At the same time, the robust solution 𝑆R provides significant im-

provement over all of these nominal solutions in the worst-case. In particular, for the

two models 𝑚LC3 and 𝑚LC12 suggested by the CAIC and AIC metrics, respectively,

the relative improvements are 4.15% and 3.69%.

The main takeaway from this analysis is that robust optimization provides an

alternative to model selection. When the data set does not clearly imply one single

104

Num. segments 𝐾 𝑅(𝑆N,𝐾 ;𝑚LC𝐾) ($) 𝑅(𝑆N,𝐾 ;ℳ) ($) WCL (%) RI (%)

𝐾 = 3 65.34 61.32 6.17 4.15
𝐾 = 4 64.87 61.56 5.10 3.74
𝐾 = 5 64.90 61.35 5.47 4.09
𝐾 = 6 66.19 62.58 5.46 2.05
𝐾 = 7 64.87 62.71 3.33 1.83
𝐾 = 8 67.02 62.33 7.01 2.46
𝐾 = 9 65.14 62.24 4.45 2.60
𝐾 = 10 65.49 62.33 4.82 2.46
𝐾 = 11 66.16 62.48 5.57 2.22
𝐾 = 12 65.80 61.59 6.41 3.69

Table 3.4: Comparison of nominal and worst-case revenues of product lines
𝑆N,3, . . . , 𝑆N,12.

“best” model, but instead implies multiple “reasonably good” models, robustness pro-

vides a means of simultaneously optimizing against all of these models, rather than

optimizing only against a single one.

3.4.6 Structural robustness under distinct models

In Section 3.4.5, we considered how robust optimization can be used to account for

uncertainty in the number of segments in the LCMNL model. In this section, we take

this idea a step further by using robust optimization to account for our uncertainty

over structurally distinct models. In particular, in a given application, we may develop

models that make very different assumptions. For example, we may estimate both a

first-choice model, as in Section 3.4.2, and an LCMNL model as in Sections 3.4.3 and

3.4.5. As in Section 3.4.5, one model may not clearly stand out as the best model.

At the same time, if we make a product line decision based on one of these models,

the revenue that is garnered may be significantly lower than anticipated if the market

responds according to one of the other models.

To demonstrate the value of robustness, we proceed as follows. We assume that

after analyzing the conjoint data set, we identify the following set of models:

ℳ = {𝑚FC,𝑚LC3,𝑚LC12}, (3.22)

105

Worst-case
Nominal revenue ($) revenue ($)

Product line 𝑅(·;𝑚FC) 𝑅(·;𝑚LC3) 𝑅(·;𝑚LC12) 𝑅(·;ℳ) WCL (%) RI (%)

𝑆N,𝑚FC 72.82 55.74 56.39 55.74 23.45 13.70
𝑆N,𝑚LC3 40.98 65.34 61.32 40.98 37.28 54.64
𝑆N,𝑚LC12 48.49 62.93 65.80 48.49 26.31 30.69

𝑆R 63.69 63.43 63.38 63.38 – –

Table 3.5: Performance of nominal and robust product lines under the different models
inℳ as well as the worst-case model.

where 𝑚FC is the nominal first-choice model from Section 3.4.2 constructed using

the estimated partworth vectors of all 330 respondents and 𝑚LC3 and 𝑚LC12 are the

LCMNL models with 𝐾 = 3 and 𝐾 = 12 segments, respectively, estimated from

the pairwise comparison data. For each model 𝑚 ∈ ℳ, we solve the nominal PLD

problem (3.2) to obtain the nominal product line 𝑆N,𝑚. We compute the revenue of

𝑆N,𝑚 under each model 𝑚′ ∈ ℳ, as well as its worst-case revenue over ℳ. Then,

we solve the robust PLD problem (3.12) to obtain the robust product line 𝑆R, and

compute the revenue of 𝑆R under each model 𝑚′ ∈ ℳ as well as its worst-case

revenue. We compute the worst-case loss (WCL) of each model 𝑚 and the relative

improvement (RI) of the robust product line 𝑆R over the nominal product line for

each model 𝑚.

Table 3.5 displays the nominal and worst-case revenues of each of the product lines.

From this table, we can see that committing to a single model leads to significantly

lower revenues under the other models. For example, if we assume the first-choice

model 𝑚𝐹𝐶 , the nominal revenue is $72.82, but this reduces to $55.74 if the true

model is the 𝐾 = 3 segment LCMNL model, representing a loss of over 20%. If

we instead assume the 𝐾 = 3 LCMNL model, the nominal revenue is $65.34, but

this reduces to $40.98 if the realized model is the first-choice model (a loss of over

35%). The WCL of all three nominal product lines is over 20%, indicating that in

the worst-case, the revenue of each of these product lines deteriorates by over 20%.

In contrast to the nominal solution, the robust solution is able to achieve better

worst-case performance, ranging from a 13.70% improvement (over the first-choice

106

Price $100 $80 $95 $100 $70
Large size
Red color
Logo
Handle
PDA holder
Cellphone holder
Mesh pocket
Velcro flap
Boot

Figure 3-6: First-choice product line, 𝑆N,𝑚FC .

solution) to 54.64% (over the 𝑚LC3 solution). Moreover, the revenue of the robust

solution is strikingly consistent over all three models, ranging from $63.38 to $63.69.

Although the robust solution is not able to simultaneously achieve the best per-

formance that is possible for each of the three models, it is able to achieve good

performance for all three models and achieves better aggregate performance than

the solution of each individual model. In this way, robust optimization allows us to

incorporate all of the models that we deem acceptable, rather than just one.

It is also interesting to examine the product lines themselves. Figures 3-6, 3-7 and

3-8 display the nominal product lines for 𝑚FC, 𝑚LC3 and 𝑚LC12, respectively, while

Figure 3-9 displays the robust product line. The first column indicates the attribute

and each subsequent column represents one of the products; in a given column, a

shaded cell indicates that the product has the corresponding attribute. For example,

the fourth product in the first-choice product line is priced at $100, and has a handle,

a PDA holder, a cellphone holder and a mesh pocket. For easier comparison, Figure 3-

10 shows the competitive offerings, that is, the products comprising the no-purchase

option in the same format.

From these figures, we can see that the three nominal product lines are very dif-

ferent in terms of the actual products. For example, the first-choice product line is

structured in a way that it includes products that directly compete with the compet-

itive offerings that comprise the no-purchase option. As a specific example, consider

the third product, which is identical to the high-end bag (see Figure 3-10) in terms

107

Price $100 $100 $100 $100 $100
Large size
Red color
Logo
Handle
PDA holder
Cellphone holder
Mesh pocket
Velcro flap
Boot

Figure 3-7: LCMNL model with 𝐾 = 3 product line, 𝑆N,𝑚LC3 .

Price $100 $100 $100 $80 $100
Large size
Red color
Logo
Handle
PDA holder
Cellphone holder
Mesh pocket
Velcro flap
Boot

Figure 3-8: LCMNL model with 𝐾 = 12 product line, 𝑆N,𝑚LC12 .

Price $100 $100 $95 $100 $100
Large size
Red color
Logo
Handle
PDA holder
Cellphone holder
Mesh pocket
Velcro flap
Boot

Figure 3-9: Robust product line, 𝑆R.

108

Price $70 $85 $100
Large size
Red color
Logo
Handle
PDA holder
Cellphone holder
Mesh pocket
Velcro flap
Boot

Figure 3-10: Competitive products.

of the non-price features, but is priced at $95 instead of $100 and is thus more at-

tractive. In contrast to the first-choice product line, the LCMNL product lines have

products that are different in terms of features and in general are priced higher. This

difference in the product lines under the three models manifests itself in the results

of Table 3.5, which shows how each nominal product line is suboptimal under one of

the other two nominal models.

Comparing the nominal product lines to the robust product line in Figure 3-

9, we can see that the robust product line contains three products found in the

nominal single-model product lines. Specifically, the third product in the first-choice

is identical to the third product in the robust product line; the second product in

the LCMNL 𝐾 = 3 product line and the fourth product in the robust product line

are identical; and the third product in the LCMNL 𝐾 = 3 product line and the

fifth product in the robust product line are identical. Furthermore, the first and

second product of the robust product line differ by one attribute from the third and

first product, respectively, of the LCMNL 𝐾 = 12 product line. Thus, the robust

product line could be viewed as effectively “blending” the three single-model product

lines. This characteristic of the robust product line agrees with our intuition: by

using products that are identical or very similar to products in the individual single-

model product lines, it seems reasonable to expect that the robust product line should

achieve good performance over all three models.

109

3.5 Conclusion

In this chapter, we have extended the familiar nominal product line design problem

to account for parameter uncertainty and structural uncertainty by adopting a robust

optimization approach. With regard to parameter uncertainty, we showed through a

number of numerical experiments using a real conjoint dataset that parameter uncer-

tainty under three different widely used models has the potential to greatly reduce

realized revenues. We further showed how, using the approach we have proposed, it

is possible to guard against uncertainty and to limit its impact on revenues. With

regard to structural uncertainty, we demonstrated that different model structures can

lead to significantly different product line decisions, and that each such product line

decision may be highly suboptimal for a different model structure. We then showed

how optimizing against the worst-case revenue over all of the structurally different

models leads to product lines that achieve good performance over all of the models

and improve on each single-model product line in the worst-case.

A number of possibilities exist for further exploring the methodology presented

here. Apart from the choice model, there exist many other sources of uncertainty.

One such source of uncertainty is in the cost information; we may not precisely know

the incremental marginal cost of each attribute. Another source of uncertainty is in

the no-purchase behavior. In particular, we may not precisely know the competitive

offerings that give rise to the no-purchase option; moreover, these competitive offer-

ings may be decided in response to the product line that we offer. One could adapt

the worst-case framework that we have described here to accommodate these consid-

erations by populating the uncertainty set with models that correspond to different

competitive response scenarios.

110

Chapter 4

Data-driven assortment optimization

4.1 Introduction

A ubiquitous element of business is that of making an assortment decision, which can

be described most generally as follows. A firm offers a set of products (an assort-

ment) to a group of individuals. The individuals possess preferences over the different

products, which may vary from individual to individual, and proceed to select the

product that they most prefer; the firm then garners some revenue from the choices

of the individuals. The problem of assortment optimization is to decide what set

of products, taken from a larger set of possible products, should be offered so as to

maximize the firm’s expected revenue when customers exercise their preferences.

Assortment optimization problems arise in many contexts:

∙ Retail. As a concrete example, consider a grocery store. A grocery store has

many different product categories (e.g., coffee, soft drinks, breakfast cereals and

so on). Within each category, the grocery store has many different individual

products that could be stocked on its shelves (e.g., for coffee, the grocery store

might have different roasts of different brands in different sizes). The grocery

store must decide which ones to stock on its shelves so as to maximize its

expected revenue per customer.

∙ Online advertising. In online advertising, part of a webpage is devoted to

111

displaying ads that are managed by an advertising platform (such as Google’s

AdSense system). The advertising platform has limited display space and must

decide which ads to display so as to maximize the expected revenue (paid by

the advertiser to the platform) per page view.

∙ Social security. As part of its social security system, a government may offer

its citizens a number of funds that they can invest in for retirement. These

funds may vary with respect to the type of securities, the industries represented

in those securities and their overall risk-return performance. The government

must then decide which funds to allow its citizens to invest in so as to ensure

the maximum average return for its population while limiting the risk to the

total investment of its citizens. A similar problem is faced by private employers

who must decide on the assortment of 401(k) retirement savings plan to offer

to their employees.

Such decisions have immense impact. In the retail domain, [48] describe how the

grocery store Super Fresh stopped carrying certain dry grocery items in order to make

room for fresh offerings, which lead to customers taking their business to other stores

and ultimately, to the store declaring bankruptcy. In social security, [90] describe

how the Swedish government in 2000 undertook an effort to privatize and reform

the country’s social security system. The government allowed private funds meeting

certain criteria to be offered and encouraged its citizens to choose from among the

resulting 456 different funds. The authors compare those who actively selected their

portfolios with those who simply invested in a carefully designed default fund. The

authors write:

[Those] who selected portfolios for themselves selected a higher equity

exposure, more active management, much more local concentration, and

higher fees. ... Because of the decline in the market that followed the

launch of this plan, investors did not do well for the first three years (from

October 31, 2000, through October 31, 2003), but those who invested in

the default fund suffered less. The default fund lost 29.9 percent in those

112

three years, while the average portfolio of those participants who picked

their funds actively lost 39.6 percent. ... Through July 2007 the default

fund is up 21.5 percent while the average actively managed portfolio is up

only 5.1 percent. [90]

The importance of assortment decisions is also underscored by the numerous commer-

cial planning tools that are available or under development such as IBM’s DemandTec R○

Assortment Optimization tool [61], JDA Assortment Optimization [64], Oracle Retail

[72] and Celect’s Choice Engine [31].

Assortment decisions in practice are difficult for a number of reasons:

1. Choice modeling. Most assortment decisions are affected by demand sub-

stitution. Each customer has preferences for the different products, and would

ideally want to be able to choose the product from the universe of products that

he prefers the most. However, if this product is not present in the assortment,

he will select the product in the assortment that is most preferable to him. To

model demand with substitution, there exists a wide variety of discrete choice

models that may be used, such as the multinomial logit (MNL), nested logit

(NL) and mixed multinomial logit (MMNL) models [10]. This poses a challenge

because the decision maker is faced with the question of which model to use. If

the model is too simple, it may underfit the available data. If it is too complex,

it may overfit the available data, leading to inaccurate predictions.

2. Tractability. Although in some cases the underlying choice model leads to an

assortment optimization problem that can be easily solved, typically the result-

ing problem is difficult from a computational complexity standpoint. There is

also often an undesirable tradeoff between predictive accuracy and tractability:

simple but inaccurate choice models lead to easy optimization problems, while

complex choice models lead to intractable problems.

3. Constraints. In many assortment contexts, the firm may have various business

rules that limit the possible assortments. A basic constraint is that of capacity;

113

for instance, a retailer may have limited shelf space, and an advertiser may

have limited space on a webpage to fit ads. However, there may be many other

constraints arising from the firm’s internal rules that could affect assortment

decisions. For example, a retailer may require that some products be offered

together (e.g., if brand X dark roast coffee is offered, then brand Y dark roast

coffee must also be offered), that only some number of products within a certain

subclass of products is offered (e.g., of all dark roast coffee brands, offer at most

three) or require at least some number of products within a given subset of

products to be offered (e.g., offer at least two medium roast coffee products).

In this chapter, we propose a new approach for making assortment decisions that

directly addresses the above challenges. The approach is based on modeling the

choice behavior of the market through a generic ranking-based model of choice, and

then using this ranking-based choice model to formulate and solve a mixed-integer

optimization (MIO) problem that directly yields the optimal assortment decision. We

make the following specific contributions:

1. We present a new approach for making assortment decisions based on modeling

and solving the problem as an MIO problem. The optimization problem as-

sumes a generic non-parametric choice model where the market is represented

by a probability distribution over a finite, fixed collection of rankings over the

products; such a model is able to capture any choice model based on random

utility maximization, and can be readily formulated in an MIO framework. The

optimization problem is efficient from a modeling perspective, as the number of

binary variables scales with the number of products and the problem possesses

desirable structure that facilitates its solution by standard solution techniques

(specifically branch-and-bound). Using standard MIO modeling techniques, the

problem also readily accommodates constraints.

2. We present an associated procedure for estimating the ranking-based choice

model required by our model. The approach is based on solving a large-scale

linear optimization (LO) problem that aims to minimize the ℓ1 error between the

114

choice probabilities predicted by the model and the actual choice probabilities

that are given by the data. We propose an efficient solution procedure based

on column generation to find a finite collection of rankings and an associated

probability distribution over them.

3. We demonstrate the effectiveness of our approach computationally:

(a) We show that our assortment optimization model is practically efficient.

Using commercial solvers, we show that we are able to solve very large

instances of the basic assortment optimization problem with large numbers

of products and large numbers of rankings comprising the underlying choice

model to full optimality. Moreover, we show that in a large number of

cases, the solution of the LO relaxation is integral, and when it is not, the

relaxation gap is very small.

(b) We show that constraints are easily modeled in our framework and have

minimal impact on the practical efficiency of our model. To evaluate the

benefit of our MIO framework, we adapt a local search procedure that de-

livers excellent practical performance on “simple” problems, namely uncon-

strained and cardinality constrained assortment problems, for more com-

plex assortment optimization cases. We show that our MIO approach

outperforms this local search procedure in these more complex cases.

(c) We show that our estimation approach is tractable and yields accurate

ranking-based models. To demonstrate this, we generate transaction data

according to a known choice model, estimate our ranking-based model

using a portion of the data and evaluate the accuracy of the estimated

model on the remainder of the data. We show that our approach becomes

more accurate with more data, is relatively resistant to overfitting and

makes more accurate revenue predictions than a simple parametric model

and a state-of-the-art non-parametric approach.

(d) We show that combining our estimation and optimization approaches leads

to effective decisions. To demonstrate this, we apply our estimation pro-

115

cedure to a set of training data, solve our MIO problem to obtain an

assortment and then compare the true revenue of this assortment, i.e., un-

der the same model that generated the data, to the best possible revenue

under the same model. We show that our combined approach leads to

revenues that are only a few percent from the optimal, that improve with

more data and that are higher than revenues obtained from optimizing the

aforementioned alternative parametric and non-parametric models.

The rest of this chapter is organized as follows. In Section 4.2, we review the relevant

literature in choice modeling and assortment optimization. In Section 4.3, we present

our modeling framework by describing the underlying ranking-based choice model

and our MIO model for making assortment decisions given such a choice model.

In Section 4.4, we present our estimation procedure for producing a ranking-based

choice model from transaction data. In Section 4.5, we report on the results of our

computational experiments. Lastly, in Section 4.6, we summarize our findings and

propose directions for future research.

4.2 Literature review

Assortment optimization is a central topic in the operations management research

literature; for a comprehensive overview of the topic, we refer the reader to the book

chapter of [66]. We divide our discussion of how this work fits into the existing re-

search landscape according to two areas: choice modeling and optimization.

Choice modeling. The primary prerequisite for assortment optimization is a choice

model that specifies, for a given set of products, how frequently customers will select

each product in the set. There exists a variety of choice models one could apply;

the reader is referred to the excellent literature review of [44] for a concise overview

and the books of [10] and [93] for a more detailed treatment. One of the most basic

parametric choice models is the multinomial logit model (MNL) model. Although

the MNL model is widely used, it exhibits certain undesirable properties, such as the

116

independence of irrelevant alternatives (IIA) property [10]. As a result, more complex

parametric models such as the mixture of multinomial logits (MMNL) model and the

nested logit (NL) model have been proposed.

While parametric models have proven to be accurate in many applications, it is

often not easy to decide on which parametric model to use. A simple model such as

the MNL model may underfit the data and ignore important choice phenomena in

the data, potentially leading to poor predictions of choice frequencies and suboptimal

assortment decisions. At the same time, a more complex model such as the NL model

may overfit the data and also lead to poor predictions and suboptimal assortment

decisions.

As an alternative to parametric models, a number of generic choice models have

been proposed that make minimal structural assumptions and that are capable of

representing a wide variety of choice models. In particular, [44] proposed a general

model of choice where one represents choice behavior by a probability distribution

over all of the possible rankings of the products. For a given assortment, [44] then pro-

pose predicting the expected revenue of the assortment by computing the worst-case

expected revenue, where the worst-case is taken over all probability distributions that

are consistent with the available transaction data. They show, using both synthetic

and real data, that their revenue predictions are more accurate than those produced

by parametric models such as MNL and MMNL. Another general model that has

recently been proposed is the Markov chain model of customer choice [25]. In this

model, products are modeled as states in a Markov chain and substitution behavior is

modeled by transitions in the same Markov chain; the choice probabilities for a given

offer set can then be computed as the absorption probabilities of the products in the

offer set. They show that such a model provides a good approximation to any choice

model based on random utility maximization. Note, however, that the Markov chain

choice model as presented in [25] can only be estimated when one has historical data

corresponding to a specific set of 𝑛 + 1 assortments, where 𝑛 is the number of prod-

ucts; the estimation of the model when one has an arbitrary collection of historical

assortments remains an open problem.

117

The assortment optimization approach that we present in this chapter builds upon

the framework of [44] in that we also consider a probability distribution over rankings,

but there is a critical difference. As mentioned above, [44] is concerned with predicting

revenues by evaluating the worst-case revenue over all probability distributions that

reconcile the available data. In contrast, our approach does not consider the worst

case. Rather, we fix a small set of rankings over the products and a probability

distribution over this small set of rankings. This is important for three reasons. The

first reason is that revenue predictions under our framework are considerably simpler

to compute than in the worst-case approach. In our framework, for a given set of

products, one simply computes the most preferred product under each ranking and

sums the corresponding revenues weighted by the probability distribution. On the

other hand, evaluating the worst-case revenue when the support of the probability

distribution is the set of all possible ranking is more challenging, as one has to solve

an LO problem with an intractable number of decision variables (one per ranking of

products; for 𝑛 products and a single no-purchase alternative, this results in (𝑛 + 1)!

decision variables) [44]. The second reason, which is related to the first, is that in

our framework, the corresponding assortment optimization problem can be compactly

formulated as an MIO whose size scales gracefully in the number of products and the

number of rankings. In contrast, in the worst-case framework, it is not clear how

one may formulate the problem of optimizing the worst-case revenue as an efficiently

solvable mathematical optimization formulation. The most promising proposal for

solving this problem is the ADXOpt algorithm, proposed by [62], which is a local

search algorithm and cannot guarantee global optimality. The third and final reason

is that there are substantial differences in predictive accuracy. As we will show later,

fixing a set of rankings and a probability distribution over them leads to more accurate

predictions of revenue than the worst-case approach (Section 4.5.4), and ultimately

leads to better decisions (Section 4.5.6).

This conceptual difference between our work and the framework of [44] leads to the

question of estimation: given some transaction data, what is a set of rankings and an

associated probability distribution that would give rise to this data? In response, we

118

propose a simple estimation procedure for identifying such a probability distribution

and a set of rankings. Our procedure is based on solving an ℓ1 approximation problem

using column generation. To the best of our knowledge, the only other procedure for

fitting this kind of choice model – a probability distribution over the set of rankings –

is the approach of [95]. There are some similarities between our procedure and that of

[95]; most notably, both we and [95] propose a column generation step that involves

solving essentially the same subproblem. However, the main difference between our

proposal and that of [95] is that we approach the model from an ℓ1 approximation

perspective whereas [95] use maximum likelihood estimation. This turns out to be

important, because one can find optimal solutions to our problem that are basic fea-

sible solutions, where only a small number of rankings have non-zero probability; this

limits the complexity of the model that our procedure identifies and guards against

overfitting. On the other hand, in the framework of [95], one must perform some kind

of model selection to prevent overfitting.

Optimization. Alongside the body of research devoted specifically to modeling

choice, there is a rich literature that considers assortment optimization under these

models – some examples include the MNL model [89], the robust MNL model [82], the

NL model [37, 69], the MMNL model [30, 81] and the Markov chain choice model [25,

46]. There is also research that considers assortment optimization under constraints

such as cardinality constraints [80, 49], capacity constraints [41, 49, 47] and other

constraints such as precedence and quality consistency [36].

The majority of prior research on assortment optimization fits what can be sum-

marized as a “fix-then-exploit” approach: one fixes a given parametric choice model

and then exploits the structure of the resulting optimization problem to develop exact

solution procedures, if possible, or otherwise heuristics or approximation algorithms.

On the other hand, the approach we propose and advocate for is to estimate a ranking-

based model of choice from the data and to formulate the assortment optimization

problem as an MIO problem. We believe that our approach carries a number of ad-

vantages. First, in our approach, there is no “problem-specific” effort that is required:

119

MIO problems can always be solved exactly via branch-and-bound to obtain a solu-

tion that is provably optimal or has a guarantee on its suboptimality (if the process

is terminated early). Second, MIO as a methodology is highly flexible, in that (1) we

can easily model a variety of business rules as linear constraints in the MIO problem,

and (2) we can then simply “declare” these constraints to the solver, and let the solver

do the work of accounting for them. In contrast, constraints are highly problematic

in the fix-then-exploit approach, in that they necessitate entirely different algorithms

relative to the unconstrained case. For example, the unconstrained MNL problem can

be solved by enumerating the 𝑛 revenue-ordered subsets [89]; however, with capac-

ity constraints, the problem becomes NP-Hard and one must consider more complex

approximation algorithms [41].

Of special note is the ADXOpt algorithm, proposed by [62]. ADXOpt is a local

search procedure that starts with the empty set and in each iteration, moves to a

new assortment that most improves the expected revenue by considering additions

of products outside of the assortment, deletions of products inside of the assortment

and exchanges of products inside the assortment with ones outside. The procedure is

general in that the only prerequisite for it is a function that maps an assortment to its

expected revenue. Moreover, the procedure identifies the exact optimal assortment

for certain choice models and delivers excellent performance in numerical experiments

with other choice models (such as the model of [44]). Although this approach is sim-

ple, it is not designed to handle complex constraints, nor is it clear how to extend it

to handle them. To demonstrate the impact of this, in Section 4.5.2 we consider a

reasonable modification to ADXOpt to accommodate constrained problems – namely,

to only consider local moves that maintain feasibility – and we show that for mod-

erately constrained problems, ADXOpt can be significantly suboptimal compared to

our MIO approach.

Outside of operations management, assortment optimization is connected to the

problem of product line design (PLD), which is a central problem in marketing science.

In the PLD problem, a firm seeks to introduce a product that has certain attributes

to a market of heterogeneous customers. The firm must decide on which versions

120

of the product, as defined by the attributes, to offer so as to maximize the revenue

garnered from the customer’s choices. This problem has been studied extensively

and there exist many IO formulations of it (see the literature review in Chapter 3).

The MIO formulation that we describe is most similar to the formulation of the PLD

problem used in [9], which is described in the electronic companion of that paper. Our

formulation refines the formulation of [9] by modeling a large number of variables as

continuous rather than binary by exploiting a property of the constraints. However,

the scales of the problems that we are solving are different and as such, our research

generates substantially different insights. The paper of [9] solved the PLD for a

real problem involving 3584 candidate products and over 300 preference rankings of

these products; even after implementing various sophisticated MIO enhancements,

such as Lagrangian relaxation and valid inequalities, the problem required over a

week to solve to full optimality and as such, it is not practical for product line design

problems. However, in our computational experiments, the corresponding assortment

optimization problems we are faced with are considerably smaller and as such, can

be solved to full optimality within seconds and without additional enhancements of

the kind used in [9].

4.3 Assortment optimization

In this section, we describe our assortment optimization method. We begin in Sec-

tion 4.3.1 by describing our ranking-based choice model; then, in Section 4.3.2 we

present our MIO formulation for finding the optimal assortment under this choice

model.

4.3.1 Choice model

We begin by defining the non-parametric choice model that describes the choice be-

havior of the market. The model we will consider is conceptually similar to the model

used in [44]; the reader is referred to [44] for further details.

We assume that there are 𝑛 products, indexed from 1 to 𝑛. We use the index 0 to

121

denote the no-purchase alternative (the possibility that the customer does not pur-

chase any of the products that we offer). Together, we refer to the set {0, 1, 2, . . . , 𝑛}

– the set of products together with the no-purchase alternative – as the options that

are available. We assume that a customer will select exactly one of the available

options. We also assume that the no-purchase alternative 0 is always available to the

customer.

We assume that we have 𝐾 rankings or permutations 𝜎1, . . . , 𝜎𝐾 over the options

{0, 1, 2, . . . , 𝑛}. Each permutation 𝜎𝑘 : {0, 1, 2, . . . , 𝑛} → {0, 1, 2, . . . , 𝑛} is a bijection

that assigns each option to a rank in {0, 1, 2, . . . , 𝑛}. The value 𝜎𝑘(𝑖) indicates the

rank of option 𝑖; 𝜎𝑘(𝑖) < 𝜎𝑘(𝑗) indicates that 𝑖 is more preferred to 𝑗 under the

permutation 𝜎𝑘. We can think of each 𝜎𝑘 as a “mode” or “type” of choice behavior

that a customer may follow. We assume that given a set of products 𝑆 ⊆ {1, 2, . . . , 𝑛},

a customer that follows the permutation 𝜎𝑘 will select the option 𝑖 from the set 𝑆∪{0}

with the lowest rank, i.e., the option arg min𝑖∈𝑆∪{0} 𝜎
𝑘(𝑖).

We use 𝜆𝑘 to denote the probability that a random customer makes a choice

according to the permutation 𝜎𝑘; we use 𝜆 to denote the probability mass function

(PMF) over the set of permutations {𝜎1, . . . , 𝜎𝐾}. For a given assortment of products

𝑆 ⊆ {1, 2, . . . , 𝑛}, the probability P(𝑖 |𝑆) that a random customer selects option

𝑖 ∈ {0, 1, 2, . . . , 𝑛} given that the available set of products was 𝑆 is given by

P(𝑖 |𝑆) =
𝐾∑︁
𝑘=1

𝜆𝑘 · I{𝑖 = arg min
𝑖′∈𝑆∪{0}

𝜎𝑘(𝑖′)},

where I{·} is the indicator function (I{𝐴} is 1 if 𝐴 is true and 0 otherwise).

Let 𝑟𝑖 be the revenue of option 𝑖; we assume that the revenue 𝑟0 of the no-purchase

alternative is exactly zero. Then the expected revenue from offering the set of products

122

𝑆 is denoted by 𝑅(𝑆) and is given by

𝑅(𝑆) =
∑︁
𝑖∈𝑆

𝑟𝑖 · P(𝑖 |𝑆)

=
∑︁
𝑖∈𝑆

𝑟𝑖 ·

(︃
𝐾∑︁
𝑘=1

𝜆𝑘 · I{𝑖 = arg min
𝑖′∈𝑆∪{0}

𝜎𝑘(𝑖′)}

)︃
.

4.3.2 Mixed-integer optimization model

Having defined the non-parametric choice model we will be using, we now turn our

attention to how to make assortment decisions. The problem we wish to solve is to

find the set of products 𝑆* that maximizes the expected revenue:

𝑆* = arg max
𝑆⊆{1,...,𝑛}

𝑅(𝑆).

We will formulate the problem as an MIO problem. For each product 𝑖 ∈ {1, . . . , 𝑛},

let 𝑥𝑖 be a binary decision variable that is 1 if product 𝑖 is included in the assortment,

and 0 otherwise. For each option 𝑖 ∈ {0, 1, . . . , 𝑛}, let 𝑦𝑘𝑖 be a decision variable that

is 1 if option 𝑖 is chosen under the 𝑘th permutation, and 0 otherwise.

The problem, in its most basic form, can then be formulated as follows.

maximize
x,y

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑟𝑖 · 𝜆𝑘 · 𝑦𝑘𝑖 (4.1a)

subject to
𝑛∑︁

𝑖=0

𝑦𝑘𝑖 = 1, ∀ 𝑘 ∈ {1, . . . , 𝐾}, (4.1b)

𝑦𝑘𝑖 ≤ 𝑥𝑖, ∀ 𝑘 ∈ {1, . . . , 𝐾}, 𝑖 ∈ {1, . . . , 𝑛}, (4.1c)∑︁
𝑗:𝜎𝑘(𝑗)>𝜎𝑘(𝑖)

𝑦𝑘𝑗 ≤ 1− 𝑥𝑖, ∀ 𝑘 ∈ {1, . . . , 𝐾}, 𝑖 ∈ {1, . . . , 𝑛}, (4.1d)

∑︁
𝑗:𝜎𝑘(𝑗)>𝜎𝑘(0)

𝑦𝑘𝑗 = 0, ∀ 𝑘 ∈ {1, . . . , 𝐾}, (4.1e)

𝑥𝑖 ∈ {0, 1}, ∀ 𝑖 ∈ {1, . . . , 𝑛}, (4.1f)

𝑦𝑘𝑖 ≥ 0, ∀ 𝑘 ∈ {1, . . . , 𝐾}, 𝑖 ∈ {0, 1, . . . , 𝑛}. (4.1g)

123

In order of appearance, the constraints have the following meaning. Constraint (4.1b)

ensures that under each ranking, exactly one choice is made. Constraint (4.1c) ensures

that under ranking 𝑘, product 𝑖 can only be chosen if product 𝑖 is included in the

assortment. Constraint (4.1d) ensures that, if product 𝑖 is included in the assortment,

then none of the options that are less preferred to 𝑖 under ranking 𝜎𝑘 may be chosen

under ranking 𝑘 (the 𝑦𝑘𝑗 variables for all 𝑗 that are less preferred are forced to zero).

Constraint (4.1e) is a similar constraint, but pertaining to the no-purchase option:

those options that are less preferred to the no-purchase option 0 may not be selected

and are forced to zero. The penultimate constraint ensures that the 𝑥𝑖’s are binary.

The last constraint ensures that each 𝑦𝑘𝑖 may be nonnegative.

It is worth commenting on several important aspects of this formulation. First,

note that the formulation does not require the 𝑦𝑘𝑖 variables to be binary. This is

because for fixed binary values of 𝑥𝑖, constraints (4.1b)–(4.1e) ensure that the 𝑦𝑘𝑖

values are forced to the correct binary values. Thus, as a result, the formulation has

only 𝑛 binary variables (the 𝑥𝑖 variables).

Second, note that the structure of the formulation allows for relatively efficient

optimization via branch-and-bound. In particular, suppose that at some point in

the branch-and-bound tree, we branch on variable 𝑥𝑖 and set it to 1. Then, con-

straint (4.1d) forces 𝑦𝑘𝑗 for all 𝑗 that are less preferred to 𝑖 to be zero. It is plausible

that for many rankings 𝑘, there may be many options 𝑗 that are less preferred to 𝑖; as

a result, branching up on the variable 𝑥𝑖 changes the revenue significantly, allowing

for other nodes in the branch-and-bound tree to be pruned.

Finally, note that although we have formulated the problem in a rather basic way,

we can expand it to incorporate different kinds of business requirements by adding

constraints to the formulation. We provide some examples below.

1. Lower and upper bounds on the size of the assortment. If the set of

possible products is large, the firm may not want to offer too many products;

similarly, the firm may also want to avoid situations where it offers too few

products. If 𝑈 and 𝐿 are upper and lower bounds on the number of products

124

in the assortment, then this requirement can be modeled as follows:

𝐿 ≤
𝑛∑︁

𝑖=1

𝑥𝑖 ≤ 𝑈.

2. Subset constraints. Similarly, the firm may have a requirement that out of a

subset 𝑆 ⊆ {1, . . . , 𝑛}, of the products, at most 𝑈𝑆 products may be included

and at least 𝐿𝑆 products must be included. This is also easily modeled; we have

𝐿𝑆 ≤
∑︁
𝑖∈𝑆

𝑥𝑖 ≤ 𝑈𝑆.

3. Precedence constraints. The firm may require that if a product 𝑖 is included,

then a product 𝑖′ must be included. This is easily modeled as

𝑥𝑖 ≤ 𝑥𝑖′ .

4.4 Choice model estimation

In Section 4.3.1, we introduced a choice model that is defined by a set of 𝐾 permu-

tations 𝜎1, . . . , 𝜎𝐾 and a probability distribution 𝜆 = (𝜆1, . . . , 𝜆𝐾) over this set. A

natural question to ask is: where do the permutations and the probability distribu-

tion come from? One answer to this question is to estimate this model directly from

transaction data, which we now describe. The type of transaction data that we will

assume is available will be conceptually similar to the data that is assumed in [44];

we refer the reader to that paper for additional detail.

We assume that from previous operations, we have data corresponding to 𝑀

assortments of products, 𝑆1, . . . , 𝑆𝑀 ⊆ {1, 2, . . . , 𝑛}. For each 𝑚 and each option 𝑖 in

𝑆𝑚∪{0}, we assume that we have 𝑣𝑖,𝑚 which is the probability with which customers

selected option 𝑖 when the assortment 𝑆𝑚 was offered to them. We assume that 𝑣𝑖,𝑚

is fully accurate and noiseless, i.e., 𝑣𝑖,𝑚 is exactly equal to P(𝑖 |𝑆𝑚) for each 𝑚 and

each 𝑖 ∈ 𝑆𝑚 ∪ {0}. We use v to denote the vector of 𝑣𝑖,𝑚 values. We will also use 𝑃

125

to denote the number of (𝑖,𝑚) pairs; v is then a vector of dimension 𝑃 .

Let us assume, for a moment, that we consider the entire set of (𝑛 + 1)! permu-

tations on the total set of options {0, 1, 2, . . . , 𝑛}; that is, we set 𝐾 = (𝑛 + 1)! and

allow the collection 𝜎1, . . . , 𝜎𝐾 to correspond to all of the possible permutations of

the options. Then, as in [44], we can define the matrix A as the matrix of 𝐴𝑘
𝑖,𝑚 values,

where

𝐴𝑘
𝑖,𝑚 =

⎧⎨⎩ 1, if 𝑖 = arg min𝑗∈𝑆𝑚∪{0} 𝜎
𝑘(𝑗),

0, otherwise.

In words, 𝐴𝑘
𝑖,𝑚 is 1 if under permutation 𝑘, the customer would have chosen option

𝑖 from the set of options 𝑆𝑚 ∪ {0}, and is 0 otherwise. The matrix A, vector v and

probability mass function 𝜆 are related in that 𝜆 must satisfy the linear system of

equations

A𝜆 = v.

Therefore, one way that we may identify 𝜆 is to solve a problem where we minimize

the ℓ1 error between A𝜆, which is the vector of predicted choice probabilities for the

options in the assortments 𝑆1, . . . , 𝑆𝑀 , and v, which is the vector of actual choice

probabilities for those same options. Mathematically, this problem can be stated as

follows:

minimize
𝜆

‖A𝜆− v‖1 (4.2a)

subject to 1𝑇𝜆 = 1, (4.2b)

𝜆 ≥ 0. (4.2c)

Through standard LO modeling techniques (see, e.g., [23]), this problem can be re-

formulated into the following LO problem:

minimize
𝜆,𝜖+,𝜖−

1𝑇𝜖+ + 1𝑇𝜖− (4.3a)

subject to A𝜆 + 𝜖+ − 𝜖− = v, (4.3b)

1𝑇𝜆 = 1, (4.3c)

126

𝜆, 𝜖+, 𝜖− ≥ 0. (4.3d)

At first glance, the problem that we have arrived at may not appear to be useful. In

particular, the number of 𝜆𝑘 variables is (𝑛+1)! – for even the smaller values of 𝑛 that

may occur in practice, the resulting number of variables is too large for the problem

to be directly solved by off-the-shelf solvers. The value of modeling the estimation

problem in this way is that we have cast it as a large-scale LO problem where the

columns of the 𝜆𝑘 variables follow a specific combinatorial structure. Thus, we are

able to apply column generation to solve the problem efficiently.

At a high level, our column generation procedure operates as follows. At each

iteration, we maintain a collection of permutations 𝜎1, . . . , 𝜎𝐾 . We refer to prob-

lem (4.3) with the full set of (𝑛 + 1)! permutations as the master problem, and with

the restricted collection 𝜎1, . . . , 𝜎𝐾 of permutations as the restricted master problem.

We begin the procedure with no permutations. We solve the corresponding restricted

master. From the resulting optimal solution, we solve the subproblem to identify

the new permutation 𝜎 to add to 𝜎1, . . . , 𝜎𝐾 with the lowest reduced cost. If the

optimal value of the subproblem is negative, we add the corresponding permutation

to 𝜎1, . . . , 𝜎𝐾 , update 𝐾 and go back and solve the new restricted master problem

again; otherwise, if the optimal value of the subproblem is nonnegative, we terminate

the procedure.

We now discuss the structure of the subproblem. Let 𝛼 and 𝜈 be the dual variables

corresponding to constraints (4.3b) and (4.3c), respectively. We seek to find the

permutation 𝜎 and the corresponding column a of the matrix A such that the reduced

cost of the corresponding 𝜆 is as negative as possible. Recall that for a permutation 𝜎,

the column a is defined component-wise as 𝑎𝑖,𝑚 = 1 if under permutation 𝜎, option 𝑖 is

selected from the set of options 𝑆𝑚∪{0} and 0 otherwise. To model the permutation

𝜎, we introduce a binary variable 𝑧𝑖𝑗 for each distinct 𝑖 and 𝑗 in {0, 1, 2, . . . , 𝑛} that

takes the value 1 if under 𝜎, 𝑖 is preferred to 𝑗 (𝜎(𝑖) < 𝜎(𝑗)) and 0 otherwise. The

127

subproblem can then formulated as an integer optimization (IO) problem:

minimize
z,a

0−𝛼𝑇a− 𝜈 (4.4a)

subject to
∑︁

𝑖∈𝑆𝑚∪{0}

𝑎𝑖,𝑚 = 1, ∀ 𝑚 ∈ {1, . . . ,𝑀}, (4.4b)

𝑎𝑖,𝑚 ≤ 𝑧𝑖𝑗, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑖, 𝑗 ∈ 𝑆𝑚 ∪ {0}, 𝑖 ̸= 𝑗, (4.4c)

𝑧𝑖𝑗 + 𝑧𝑗𝑖 = 1, ∀ 𝑖, 𝑗 ∈ {0, 1, 2, . . . , 𝑛}, 𝑖 ̸= 𝑗, (4.4d)

𝑧𝑖𝑗 + 𝑧𝑗𝑘 − 1 ≤ 𝑧𝑖𝑘, ∀ 𝑖, 𝑗, 𝑘 ∈ {0, 1, 2, . . . , 𝑛},

𝑖 ̸= 𝑗, 𝑖 ̸= 𝑘, 𝑗 ̸= 𝑘, (4.4e)

𝑧𝑖𝑗 ∈ {0, 1}, ∀ 𝑖, 𝑗 ∈ {0, 1, 2, . . . , 𝑛}, 𝑖 ̸= 𝑗, (4.4f)

𝑎𝑖,𝑚 ∈ {0, 1}, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑖 ∈ 𝑆𝑚 ∪ {0}. (4.4g)

In order of appearance, the constraints have the following meaning. Constraint (4.4b)

ensures that in each portion of a corresponding to a single assortment 𝑆𝑚, exactly

one of the entries is one (i.e., the ranking must select one of the options in 𝑆𝑚∪{0}).

Constraint (4.4c) links the values in the column a with the values of the permutation;

in particular, if 𝑎𝑖,𝑚 = 1, then it must be that 𝑧𝑖𝑗 = 1 for every other 𝑗 in 𝒮 ∪ {0}.

Constraint (4.4d) represents non-reflexivity: either 𝑖 is ranked lower than 𝑗 or 𝑗 is

ranked lower than 𝑖. Constraint (4.4e) represents transitivity: for any three distinct

options 𝑖, 𝑗 and 𝑘, it must be that if 𝑖 is ranked lower than 𝑗 and 𝑗 is ranked lower

than 𝑘, then 𝑖 is ranked lower than 𝑘. The objective function corresponds to the

reduced cost of the permutation encoded by the z variables.

The full column generation procedure is presented as Algorithm 3.

We conclude our discussion of our estimation procedure by discussing two practical

modifications that we will employ in our numerical experiments in Section 4.5. First of

all, the current stopping criterion ensures that we solve the problem to full optimality;

this happens when the objective ‖A𝜆 − v‖1 = 0, or equivalently, 𝜆 exactly solves

A𝜆 = v. Alternatively, we may be satisfied with an approximate solution to this

system of equations. To obtain an approximate solution, we may consider terminating

128

Algorithm 3 Column generation algorithm.
Require: Choice probability vector v, training assortments 𝑆1, . . . , 𝑆𝑀 .

Initialize 𝐾 to 0.
Set A to be a 𝑃 × 0 (empty) matrix.
Solve restricted master problem (4.3) with A to obtain dual variable values 𝛼 and
𝜈.
Solve subproblem (4.4) with 𝛼, 𝜈 to obtain z, a.
while −𝛼𝑇a− 𝜈 < 0 do

Update 𝐾 ← 𝐾 + 1.
Set 𝜎𝐾 as 𝜎𝐾(𝑖) =

∑︀𝑛
𝑗=0
𝑗 ̸=𝑖

𝑧𝑗𝑖.

Set A← [A a].
Solve restricted master problem (4.3) with A to obtain primal variable values
𝜆1, . . . , 𝜆𝐾 , dual variable values 𝛼 and 𝜈.
Solve subproblem (4.4) with 𝛼, 𝜈 to obtain z, a.

end while
return 𝜎1, . . . , 𝜎𝐾 and 𝜆1, . . . , 𝜆𝐾 .

when the objective value of the restricted master problem is close enough to zero, i.e.,

when ‖A𝜆−v‖1 ≤ 𝑃 · 𝜖 for some 𝜖 > 0. Observe that the quantity ‖A𝜆−v‖1/𝑃 can

be interpreted as the mean absolute error (MAE) of the current solution 𝜆1, . . . , 𝜆𝐾 ,

𝜎1, . . . , 𝜎𝐾 on the training set; thus, 𝜖 represents the training set MAE that we wish

to achieve.

Second of all, note that although the subproblem (4.4) is an IO problem, it is not

necessary to solve it as such. In particular, any solution (z, a) that is feasible for

problem (4.4) and achieves a negative objective value corresponds to a permutation 𝜎

whose 𝜆 variable may enter the basis. Thus, rather than solving subproblem (4.4) ex-

actly, we may opt to solve it approximately via a local search procedure. We consider

a local search procedure that operates as follows. Starting from some initial (ran-

domly chosen) permutation 𝜎, we consider all neighboring permutations 𝜎′ obtained

by taking 𝜎 and swapping the rankings of any two distinct options. We evaluate the

reduced cost of each such 𝜎′; if no neighboring 𝜎′ improves on the reduced cost of

𝜎, we terminate with 𝜎 as the locally optimal solution. Otherwise, we move to the

𝜎′ that most improves the reduced cost of 𝜎 and repeat the procedure at this new

permutation. If the locally optimal permutation does not have negative reduced cost,

we can repeat the search starting at a new random permutation; we continue doing

129

so until we find a locally optimal permutation with negative reduced cost or we have

reached the maximum number of repetitions. Our preliminary experimentation with

using this local search procedure within the column generation procedure suggested

that it could find an approximate solution (satisfying ‖A𝜆−v‖1 ≤ 𝑃 ·𝜖) more rapidly

than by solving problem (4.4) directly as an IO problem.

4.5 Computational results

In this section, we report on the results of our computational experiments. Our

insights are as follows:

∙ In Section 4.5.1, we show that our MIO model is practically tractable. We show

that it can be solved rapidly for large instances (large numbers of products

and rankings), the LO relaxation provides a good approximation of the integer

optimal value and that in a large proportion of instances, the LO is in fact

integral.

∙ In Section 4.5.2, we show that constraints have a negligible impact on how

efficiently problem (4.1) can be solved to full optimality. At the same time, we

show that the ADXOpt local search procedure of [62], which achieves strong

performance in unconstrained and cardinality constrained problems, can be

significantly suboptimal in the presence of complex constraints.

∙ In Section 4.5.3, we show that our estimation procedure can quickly obtain

ranking-based models that yield accurate out-of-sample predictions of choice

probabilities. We show that the procedure is relatively resistant to overfitting

and learns more accurate models with more training data.

∙ In Section 4.5.4, we compare predictions of expected revenues from our approach

to revenue predictions from (1) an MNL model fitted to the same data and (2)

the worst-case approach of [44]. Although the MNL model is more accurate in

some instances, it can be significantly less accurate than our approach when the

130

underlying model is not an MNL model; moreover, even with additional data,

it is not able to learn. The worst-case predictions using the approach of [44] are

in general much less accurate than those produced by our approach.

∙ In Section 4.5.5, we show that by combining our estimation and optimization

procedures, we find assortments that achieve expected revenues within a few

percent of the (unknown) true optimal revenue. As the amount of data increases,

this optimality gap shrinks. Analogously to the lack of overfitting in prediction,

we show that our combined estimation and optimization method is resistant

to overfitting in optimization: as the number of column generation iterations

increases, the optimality gap does not deteriorate but in fact improves.

∙ In Section 4.5.6, we compare our assortments against the fitted MNL assort-

ments and the worst-case-optimal assortments (as determined by ADXOpt).

We find that our approach is better over a wider range of models than the fit-

ted MNL approach. We also find that our approach significantly outperforms

the worst-case optimal approach.

We implemented our experiments in the Julia technical computing language [24]. All

mathematical optimization problems were modeled using the JuMP package for Julia

[70]. All linear and mixed-integer linear optimization problems were solved using

Gurobi 5.60 [56] and all nonlinear optimization problems were solved using IPOPT

[96].

4.5.1 Tractability of assortment optimization model

To test the tractability of the assortment optimization formulation (4.1), we con-

sider the following experiment. For fixed values of the number of products 𝑛 and

the number of permutations 𝐾, we randomly generate 100 instances, where we uni-

formly at random generate the set of rankings 𝜎1, . . . , 𝜎𝐾 from the set of all possible

permutations, the revenue 𝑟𝑖 of each product 𝑖 from the set {1, . . . , 100}, and the

probability distribution 𝜆 from the (𝐾 − 1)-dimensional unit simplex. For each of

131

these 100 instances, we solve both the LO relaxation and the actual MIO problem

itself. We then record the average time to solve the MIO, the average time to solve

the LO relaxation, the average relaxation gap (where the relaxation gap is defined

as 100% × (𝑍𝐿𝑂 − 𝑍𝑀𝐼𝑂)/𝑍𝐿𝑂, where 𝑍𝐿𝑂 and 𝑍𝑀𝐼𝑂 are the optimal values of the

LO relaxation and the true MIO formulation, respectively) and the percentage of

instances where the LO solution turned out to be integral.

Table 4.1 reports on the above metrics for different values of 𝑛 in {10, 20, 30, 40}

and values of 𝐾 in {10, 100, 200, 500, 1000}. From Table 4.1, we can see that the MIO

formulation is very tractable; in the largest collection of instances (𝑛 = 40, 𝐾 = 1000),

problem (4.1) can be solved in approximately 10 seconds on average. Moreover, the

formulation is efficient, in the sense that the relaxation is a good approximation of

the true integer formulation; for each value of 𝑛 and 𝐾, the average gap of the LO

relaxation and the true MIO model is no more than 1%, and in a large number of

cases (more than 20% for each combination of 𝑛 and 𝐾) the LO solution is integral.

4.5.2 Constrained assortment optimization

We next show the value of using our optimization model to accommodate constraints

on the assortment. To do this, we consider the collection of instances from Sec-

tion 4.5.1 corresponding to 𝑛 = 30 products and 𝐾 = 100 permutations. For each

instance, we consider the corresponding assortment optimization problem with a ran-

domly generated set of constraints. We solve the constrained assortment optimiza-

tion problem exactly using our MIO model (4.1) and using the ADXOpt local search

heuristic proposed by [62]. We adapt the ADXOpt local search heuristic to the con-

strained setting by only allowing additions, deletions or exchanges that ensure that

the assortment will remain feasible at each iteration. We limit ADXOpt to one re-

moval of each product.

We consider several different types of constraint sets:

1. No constraints. The corresponding problem is the unconstrained problem.

2. Maximum subset. A maximum subset constraint set is parametrized by an

132

MIO Rlx. % LO
𝑛 𝐾 Time Gap (%) Integral Time (s)

10 10 0.0 0.30 81.0 0.0
10 100 0.0 0.41 69.0 0.0
10 200 0.1 0.44 65.0 0.0
10 500 0.2 0.42 66.0 0.1
10 1000 0.4 0.44 63.0 0.2

20 10 0.0 0.11 85.0 0.0
20 100 0.1 0.60 55.0 0.0
20 200 0.2 0.48 46.0 0.1
20 500 0.8 0.62 42.0 0.2
20 1000 1.8 0.58 50.0 0.7

30 10 0.0 0.19 82.0 0.0
30 100 0.2 0.52 46.0 0.1
30 200 0.5 0.56 41.0 0.1
30 500 1.9 0.69 36.0 0.5
30 1000 5.2 0.88 29.0 1.6

40 10 0.0 0.11 75.0 0.0
40 100 0.4 0.45 43.0 0.3
40 200 1.1 0.69 33.0 0.2
40 500 3.6 0.89 23.0 0.8
40 1000 10.0 0.71 19.0 2.7

Table 4.1: Results of tractability experiment.

133

integer 𝐶 that specifies the number of constraints, an integer 𝐵 that specifies

the number of products that participate in each constraint and an integer 𝑈

which specifies the maximum number of products we may select from the 𝐵

products. It has the form

𝐵𝑐∑︁
𝑖=𝐵(𝑐−1)+1

𝑥(𝑖) ≤ 𝑈, ∀ 𝑐 ∈ {1, . . . , 𝐶},

where (𝑗) is the product with the 𝑗th highest marginal revenue. For example,

with 𝐶 = 2, 𝐵 = 3 and 𝑈 = 2, the constraint set is

𝑥(1) + 𝑥(2) + 𝑥(3) ≤ 2,

𝑥(4) + 𝑥(5) + 𝑥(6) ≤ 2,

which means that from among the top three products in marginal revenue,

we may include at most two products, and from the next three products, we

also may include at most two products. Such a constraint set could model a

requirement that the assortment be diverse and not be biased towards certain

groups of products.

3. Precedence type 1. A type 1 precedence constraint set is parametrized by

an integer 𝐶 that specifies the number of constraints and an integer 𝐵 that

specifies the number of products that participate in each constraint. It has the

form
𝐵𝑐∑︁

𝑗=𝐵(𝑐−1)+1

𝑥(𝑗) ≤
𝐵(𝑐+1)∑︁
𝑗=𝐵𝑐+1

𝑥(𝑗), ∀ 𝑐 ∈ {1, . . . , 𝐶},

where, as for the maximum subset constraint set, (𝑗) indicates the product

with the 𝑗th largest marginal revenue. For example, for 𝐶 = 2 and 𝐵 = 3, the

constraint set is

𝑥(1) + 𝑥(2) + 𝑥(3) ≤ 𝑥(4) + 𝑥(5) + 𝑥(6),

𝑥(4) + 𝑥(5) + 𝑥(6) ≤ 𝑥(7) + 𝑥(8) + 𝑥(9),

134

which means that the number of products we select from the top three products

by marginal revenues (products (1) through (3)) cannot exceed the number of

products we select from the next three products by marginal revenue (products

(4) through (6)), which itself cannot exceed the number of products we select

from the next three products by marginal revenue (products (7) through (9)).

The constraint represents a form of precedence because including a product

with a high marginal revenue mandates the inclusion of products with lower

marginal revenues.

As with the maximum subset constraint, such a constraint could represent a

business requirement that the firm must offer a diverse collection of products,

and not offer just those products with the highest marginal revenue.

4. Precedence type 2. A type 2 precedence constraint set is parametrized by

an integer 𝐶 that specifies the number of constraints and an integer 𝐵 that

specifies the number of products that participate in each constraint. It has the

form ∑︁
𝑗∈𝐽𝑐

𝑥𝑗 ≤ (𝐵 − 1)𝑥𝑗*𝑐 , ∀ 𝑐 ∈ {1, . . . , 𝐶},

where for each 𝑐, 𝐽𝑐 is a subset of {1, . . . , 𝑛} of size 𝐵 − 1, and 𝑗*𝑐 is a distinct

product (i.e., not one of the products in 𝐽𝑐). In the experiments we will report

on below, we randomly choose the set of products 𝐽𝑐 ∪ {𝑗*𝑐} from {1, . . . , 𝑛} for

each instance and each of the 𝐶 constraints.

In words, this constraint requires that if the assortment includes a product in

𝐽𝑐, then it must include the “main” product 𝑗*𝑐 . This type of constraint could

represent a requirement that the firm offer certain items together. For example,

the product 𝑗*𝑐 could correspond to the “main” version of a product (e.g., regular

Coca Cola) and the products in 𝐽𝑐 could correspond to alternative versions of

this product (e.g., Diet Coke and Coke Zero) that can only be offered if the

main product is offered.

Note that for all of these constraint sets, the empty assortment (in terms of the MIO

135

formulation, this is represented by 𝑥𝑖 = 0 for all 𝑖 ∈ {1, . . . , 𝑛}) is feasible and is still

be used as the initial solution for ADXOpt, as originally described in [62].

For each instance and each such constraint set, we add the constraint set to

problem (4.1) and solve it to obtain the optimal value 𝑍*
𝑀𝐼𝑂. We also apply ADXOpt

to solve the constrained problem with the modifications described above; we let the

𝑍*
𝐴𝐷𝑋𝑂𝑝𝑡 denote the expected revenue of the ADXOpt assortment. For each instance

and each constraint set, we compute the gap as 100% × (𝑍*
𝑀𝐼𝑂 − 𝑍*

𝐴𝐷𝑋𝑂𝑝𝑡)/𝑍
*
𝑀𝐼𝑂.

We also record the time required to solve each instance under each constraint set for

both the MIO and the ADXOpt approaches.

Table 4.2 reports the average gap of each constraint set, where the average is

taken over the 100 instances, as well as the average time to solve the problem using

our MIO approach and the ADXOpt approach. We can see that, in the absence of

constraints, ADXOpt performs very well; the average optimality gap, over the 100

instances, is 0.07% and is effectively optimal. Similarly, for the maximum subset

constraint sets, ADXOpt also performs very well, with an average gap of no more

than 0.34%. However, with more complex constraints – namely the type 1 and type

2 precedence constraint sets – ADXOpt is no longer able to ensure high quality so-

lutions. For example, for the type 1 precedence constraint set, with just 𝐶 = 2

constraints with 𝐵 = 3 products, the average optimality gap is 2.46%. In other cases,

it can be much higher (e.g., for type 1 precedence constraints with 𝐶 = 2 constraints

and 𝐵 = 10 products, the gap is 15.20%). With regard to timing, note that both

approaches are fast and their speed is relatively insensitive to the presence of con-

straints. These results suggest that, while ADXOpt delivers high quality solutions

under simple constraints, it leaves value on the table in the presence of complicated

constraints. On the other hand, the MIO approach allows the firm to capture all of

this lost value, at negligible computational cost.

With regard to our comparison here, we wish to emphasize that ADXOpt was not

originally designed to accommodate complex constraints. Given this, one may claim

that the manner in which we have adapted ADXOpt to handle constraints is not the

most appropriate; that one may further modify the procedure to attain better results.

136

ADXOpt MIO ADXOpt
𝑛 𝐾 Constraint type Gap (%) Time (s) Time (s)

30 100 No constraints 0.07 0.22 0.07

30 100 Max. subset, 𝐶 = 2, 𝐵 = 5, 𝑈 = 3 0.19 0.41 0.06
30 100 Max. subset, 𝐶 = 2, 𝐵 = 10, 𝑈 = 3 0.34 0.59 0.03
30 100 Max. subset, 𝐶 = 3, 𝐵 = 5, 𝑈 = 3 0.19 0.42 0.05
30 100 Max. subset, 𝐶 = 3, 𝐵 = 10, 𝑈 = 3 0.34 0.58 0.03

30 100 Prec. type 1, 𝐶 = 1, 𝐵 = 3 0.72 0.21 0.06
30 100 Prec. type 1, 𝐶 = 2, 𝐵 = 3 2.46 0.37 0.05
30 100 Prec. type 1, 𝐶 = 1, 𝐵 = 5 1.92 0.37 0.06
30 100 Prec. type 1, 𝐶 = 2, 𝐵 = 5 6.31 0.54 0.04
30 100 Prec. type 1, 𝐶 = 1, 𝐵 = 10 7.44 0.58 0.03
30 100 Prec. type 1, 𝐶 = 2, 𝐵 = 10 15.20 1.31 0.02

30 100 Prec. type 2, 𝐶 = 3, 𝐵 = 2 0.47 0.23 0.07
30 100 Prec. type 2, 𝐶 = 5, 𝐵 = 2 0.68 0.26 0.06
30 100 Prec. type 2, 𝐶 = 10, 𝐵 = 2 1.17 0.25 0.04
30 100 Prec. type 2, 𝐶 = 3, 𝐵 = 5 1.64 0.25 0.05
30 100 Prec. type 2, 𝐶 = 5, 𝐵 = 5 1.98 0.21 0.03
30 100 Prec. type 2, 𝐶 = 10, 𝐵 = 5 6.35 0.12 0.01

Table 4.2: Results of constrained optimization comparison.

137

This is a fair criticism. The overall claim that we are making in this section is that

our MIO modeling approach provides a simple and systematic way to accommodate

a variety of constraints, allowing the user to obtain provably optimal solutions in

operationally feasible times while freeing the user from the design of problem-specific

algorithms. From this perspective, we do not believe that the aforementioned criticism

invalidates our overall claim.

4.5.3 Estimation using column generation

To evaluate our estimation procedure, we proceed as follows. For different values of

the number of products 𝑛, we consider different types of choice models. In particular,

we consider the MMNL model with 𝑇 classes, for which the choice probability P(𝑖 |𝑆)

is given by

P(𝑖 |𝑆) =
𝑇∑︁
𝑡=1

𝑝𝑡 ·
exp(𝑢𝑡,𝑖)∑︀

𝑖′∈𝑆 exp(𝑢𝑡,𝑖′) + exp(𝑢𝑡,0)
. (4.5)

We randomly generate our MMNL models as follows. For each option 𝑖 and customer

type 𝑡 we generate the values 𝑞𝑡,𝑖 uniformly on [0, 1]. For each customer type 𝑡, we

then select four of the 𝑛 + 1 utilities 𝑢𝑡,1, . . . , 𝑢𝑡,𝑛+1 randomly and set each chosen

utility to log(𝐿𝑞𝑡,𝑖), where 𝐿 is a predefined value, and the remaining utilities we

set to log(0.1𝑞𝑡,𝑖). The mixing probabilities 𝑝1, . . . , 𝑝𝑇 are uniformly drawn from the

(𝑇 − 1)-dimensional unit simplex. We indicate these models by MMNL(𝐿, 𝑇); we

consider 𝐿 ∈ {5.0, 10.0, 100.0} and 𝑇 ∈ {1, 5, 10}.

For each number of products 𝑛 and each type of choice model – value of 𝑇 and

𝐿 – we generate 100 random instances. For each instance, we randomly generate two

sets of 100 assortments and compute the choice probabilities under the ground truth

model for each option in each assortment. We treat the first set of 100 assortments as

training data that we may use to fit the model according to the estimation procedure

in Section 4.4, and the second set of 100 assortments as testing data that we will use

to evaluate the predictive accuracy of our estimated models. We vary the number of

assortments 𝑀 that we use for training from the total 100 assortments and consider

𝑀 ∈ {10, 20, 50, 100}. We run the estimation procedure and terminate it when the

138

training mean absolute error (MAE) is below 10−3. To generate columns in the

estimation procedure, we employ the local search procedure described in Section 4.4

with a maximum of ten repetitions; in all of our experiments, this was sufficient to find

an entering column at each iteration. Using the resulting ranking-based model, we

predict the choice probability of each option in each testing assortment, and compare

each such probability to the corresponding true probability as per the ground truth

model.

Table 4.3 reports the average training set and test set MAEs, where the average

is taken over the 100 instances for each value of 𝑛 and each generating model, with a

training set of 𝑀 = 20 assortments. We also report the average time required to run

the procedure in seconds (“Est. Time (s)”), the average number of iterations (“Num.

Iter.”), the average number of rankings in the final model with non-zero probability

(𝐾) and the average value of 𝑃 (recall that 𝑃 is the dimension of the v vector). From

this table, we can see that although the test set MAE is higher than the training

MAE by approximately an order of magnitude, it is still quite good (on the order of

0.01 – 0.02). Moreover, the time to run the procedure is quite modest (in the largest

cases, those with 𝑛 = 30, no more than one minute on average).

We now turn our attention to the question of how the estimation procedure is

affected by the amount of data. Table 4.4 shows how the accuracy and estimation

time vary as the number of training assortments 𝑀 varies, with 𝑛 fixed to 30 and the

utility scale parameter 𝐿 fixed to 5.0. (As in Table 4.3, the results are averaged over

the 100 instances for each case.) As the amount of data increases, the complexity of

the underlying models increases (as measured by the average of the number of per-

mutations 𝐾 in the final model) and the test set MAE also decreases with additional

data; in other words, the estimation procedure is able to learn more accurate models

as the amount of data available increases. With regard to the time required to esti-

mate the model, we find that even with 100 training assortments, the time required

to run the procedure is still modest (no more than approximately five minutes on

average).

Another interesting question to consider is how susceptible the procedure is to

139

Train Test Est. Num.
𝑛 Generating model 𝑀 MAE MAE Time (s) Iter. 𝐾 𝑃

10 MMNL(5.0, 1) 20 0.0008 0.0174 0.68 105.0 65.0 120.3
10 MMNL(5.0, 5) 20 0.0010 0.0200 0.57 90.6 69.6 119.2
10 MMNL(5.0, 10) 20 0.0010 0.0197 0.53 86.4 72.5 120.7
10 MMNL(10.0, 1) 20 0.0009 0.0162 0.71 102.1 62.4 119.3
10 MMNL(10.0, 5) 20 0.0010 0.0185 0.59 94.8 69.2 120.8
10 MMNL(10.0, 10) 20 0.0010 0.0195 0.50 87.1 72.3 120.2
10 MMNL(100.0, 1) 20 0.0007 0.0165 0.79 107.4 59.2 119.3
10 MMNL(100.0, 5) 20 0.0009 0.0189 0.67 104.2 67.8 120.1
10 MMNL(100.0, 10) 20 0.0010 0.0209 0.56 96.6 72.9 120.7

20 MMNL(5.0, 1) 20 0.0009 0.0127 7.41 220.4 125.2 219.9
20 MMNL(5.0, 5) 20 0.0010 0.0154 4.09 168.4 124.9 221.1
20 MMNL(5.0, 10) 20 0.0010 0.0159 3.30 144.9 121.4 220.0
20 MMNL(10.0, 1) 20 0.0009 0.0129 9.42 264.5 127.2 219.6
20 MMNL(10.0, 5) 20 0.0010 0.0153 4.96 194.7 128.9 220.2
20 MMNL(10.0, 10) 20 0.0010 0.0169 3.71 162.1 127.2 220.9
20 MMNL(100.0, 1) 20 0.0008 0.0120 11.13 281.1 117.3 221.0
20 MMNL(100.0, 5) 20 0.0010 0.0151 7.53 244.4 126.6 220.9
20 MMNL(100.0, 10) 20 0.0010 0.0174 5.00 196.6 131.2 219.4

30 MMNL(5.0, 1) 20 0.0010 0.0104 23.49 311.8 178.3 320.5
30 MMNL(5.0, 5) 20 0.0010 0.0124 13.83 219.3 168.2 317.9
30 MMNL(5.0, 10) 20 0.0010 0.0129 10.76 181.8 156.1 319.9
30 MMNL(10.0, 1) 20 0.0010 0.0100 32.52 382.9 188.5 321.8
30 MMNL(10.0, 5) 20 0.0010 0.0126 16.49 254.1 171.6 317.6
30 MMNL(10.0, 10) 20 0.0010 0.0137 13.20 215.1 167.0 318.0
30 MMNL(100.0, 1) 20 0.0009 0.0093 47.79 473.9 174.2 320.2
30 MMNL(100.0, 5) 20 0.0010 0.0126 44.20 371.9 177.6 324.9
30 MMNL(100.0, 10) 20 0.0010 0.0142 25.20 283.3 175.6 319.1

Table 4.3: Results of estimation procedure.

140

Train Test Est. Num.
𝑛 Generating model 𝑀 MAE MAE Time (s) Iter. 𝐾 𝑃

30 MMNL(5.0, 1) 10 0.0009 0.0174 4.65 162.3 99.3 161.0
30 MMNL(5.0, 1) 20 0.0010 0.0104 23.49 311.8 178.3 320.5
30 MMNL(5.0, 1) 50 0.0010 0.0054 103.12 489.8 288.4 802.2
30 MMNL(5.0, 1) 100 0.0010 0.0036 302.39 637.0 388.0 1605.8
30 MMNL(5.0, 5) 10 0.0010 0.0192 3.42 123.5 96.8 158.7
30 MMNL(5.0, 5) 20 0.0010 0.0124 13.83 219.3 168.2 317.9
30 MMNL(5.0, 5) 50 0.0010 0.0065 72.23 373.5 289.0 795.9
30 MMNL(5.0, 5) 100 0.0010 0.0043 231.02 524.9 414.1 1597.8
30 MMNL(5.0, 10) 10 0.0010 0.0190 3.09 107.8 93.7 160.3
30 MMNL(5.0, 10) 20 0.0010 0.0129 10.76 181.8 156.1 319.9
30 MMNL(5.0, 10) 50 0.0010 0.0073 68.88 345.1 291.3 799.6
30 MMNL(5.0, 10) 100 0.0010 0.0047 225.90 493.9 422.4 1601.0

Table 4.4: Results of estimation procedure as available data varies.

overfitting. To study this, we fix the number of training assortments 𝑀 to 20 and we

consider those instances with 𝑛 = 30, 𝑇 = 10 and 𝐿 = 5.0. We run the estimation

procedure and vary the training MAE tolerance; for each threshold we choose, we save

the model at termination (the set of permutations and the probability distribution),

and measure the MAE of this model on the test set. Table 4.5 displays the results from

this experiment, averaged over the 100 instances corresponding to each case. From

this table, we can see that although the test set MAE is generally higher than the

training set MAE, it does not increase when the training MAE is further decreased;

rather, it appears to converge. Figure 4-1 plots how the training MAE and test MAE

evolve for one instance with the number of iterations to further emphasize the above

point.

4.5.4 Comparison of revenue predictions

We now compare the predictive power of our approach with that of two other ap-

proaches. In the first approach, we fit an MNL model to a training set of assortments

using maximum likelihood estimation and using this fitted model, we predict the

expected revenue of each assortment in the test set. In the second approach, we con-

141

Train Train Test Num.
MAE Tol. MAE MAE Time (s) Iter. 𝐾

0.1000 0.0941 0.0961 0.1 3.5 3.5
0.0500 0.0464 0.0532 0.3 10.7 10.7
0.0100 0.0098 0.0214 1.9 38.1 37.4
0.0050 0.0049 0.0172 3.7 67.3 64.0
0.0010 0.0010 0.0131 11.0 183.6 158.3
0.0005 0.0005 0.0124 15.4 241.8 198.7
0.0001 9.83× 10−5 0.0117 24.7 340.1 264.4

5.00× 10−5 4.83× 10−5 0.0116 27.4 363.3 278.6
1.00× 10−5 8.58× 10−6 0.0115 30.3 388.1 293.6
5.00× 10−6 3.98× 10−6 0.0115 30.7 391.9 296.6
1.00× 10−6 4.24× 10−7 0.0115 31.2 395.6 299.6

Table 4.5: Results of estimation procedure as training MAE tolerance decreases.
Results correspond to MMNL(5.0, 10) instances with 𝑛 = 30 products and 𝑀 = 20
training assortments.

0.000

0.025

0.050

0.075

0.100

0.125

0 100 200 300 400 500
Iteration

M
A

E

Error
Training error
Test error

Figure 4-1: Evolution of training error and testing error with each column generation
iteration for one MMNL instance with 𝑛 = 30, 𝑇 = 10, 𝐿 = 5.0 and 𝑀 = 20 training
assortments.

142

sider the worst-case approach of [44] with the same training set of assortments and

use it to make predictions of the expected revenue on the test set of assortments. Our

implementation of the worst-case approach uses randomized sampling as described

in [44]. This approach involves randomly sampling a subset of size 𝐾sample of all of

the possible permutations of the 𝑛 + 1 options and solving the sampled version of

the worst-case problem. One of the difficulties of using sampling is that the sampled

worst-case LO problem may turn out to be infeasible. To address this issue, we pro-

ceed as follows. For a given value of 𝐾sample, we randomly sample 𝐾sample rankings,

and check if the sampled problem is feasible. If it is feasible, we use that sample to

make all worst-case predictions on the test set. If it is not feasible, we sample again

at the current value of 𝐾sample and check again. If we encounter infeasibility after ten

such checks, we move on to the next value of 𝐾sample. The sequence of 𝐾sample values

that our procedure scans through is

1× 104, 2× 104, . . . , 9× 104, 1× 105, 2× 105, . . . , 9× 105, 1× 106.

This approach lead to a feasible set of sampled permutations 𝒦sample in all of our

numerical comparisons. Our goal in applying this procedure was to ensure that we

find a feasible set of permutations quickly.

In addition to these three approaches, we also consider another version of our

column generation approach, which we refer to as the “averaged” column genera-

tion approach. Recall that our implementation of our column generation procedure

involves solving the subproblem using a local search, which starts from a random

permutation. Given this, and given the fact that in general there may be many prob-

ability distributions 𝜆 that satisfy the linear system A𝜆 = v, repeated executions

of the column generation procedure with the same data may produce different col-

lections of rankings and probability distributions over them. Inspired by ensemble

methods in statistical learning that combine multiple prediction methods into a sin-

gle, more accurate prediction method (for further details see, e.g., [57]), we consider

averaging the probability distributions produced by these repeated runs. Specifically,

143

CG AvgCG MNL WC
𝑛 Generating model 𝑀 AE ME AE ME AE ME AE ME AT (s)

20 MMNL(5.0, 1) 20 1.72 13.07 1.16 8.28 0.00 0.00 3.83 16.93 0.56
20 MMNL(5.0, 5) 20 1.90 8.88 1.36 6.41 2.50 9.57 6.27 15.99 0.32
20 MMNL(5.0, 10) 20 1.77 7.40 1.29 5.22 2.05 7.91 11.83 23.19 0.44
20 MMNL(10.0, 1) 20 1.81 15.40 1.34 10.88 0.00 0.00 3.16 19.38 0.82
20 MMNL(10.0, 5) 20 1.98 9.69 1.51 7.35 2.79 11.64 4.78 15.16 0.36
20 MMNL(10.0, 10) 20 1.96 8.92 1.52 6.62 2.41 9.33 8.04 17.86 0.30
20 MMNL(100.0, 1) 20 1.82 16.41 1.36 12.27 0.00 0.00 2.61 21.19 2.64
20 MMNL(100.0, 5) 20 1.94 10.38 1.60 8.07 3.54 14.73 4.27 17.06 0.97
20 MMNL(100.0, 10) 20 2.07 9.19 1.71 7.25 2.88 11.49 5.75 15.61 0.39

Table 4.6: Results of revenue prediction comparison for 𝑛 = 20 instances with 𝑀 = 20
training assortments.

given 𝜏 runs of the column generation procedure and the corresponding probability

distributions 𝜆1, . . . ,𝜆𝜏 , we produce the averaged probability distribution 𝜆avg as

𝜆avg =
1

𝜏

𝜏∑︁
𝑖=1

𝜆𝑖.

In our implementation of this averaged approach, we use the same column generation

implementation as in Section 4.5.3 for 𝜏 = 10 repetitions.

For each instance that we consider, we record the average absolute revenue error

(AE) and maximum absolute revenue error (ME) over the assortments in the test

set of that instance; we also record the average time (AT) in seconds to make a

prediction, taken over the assortments in the test set. Table 4.6 reports the metrics

for each prediction approach, averaged over the instances from Section 4.5.3 for 𝑛 = 20

products and 𝑀 = 20 training set assortments. (Note that we only report the AT

metric for the worst case approach, as it was on the order of milliseconds for the

other three approaches.) In the table and the discussion that follows, we use “CG”,

“AvgCG”, “MNL” and “WC” to indicate the single pass column generation, averaged

column generation, fitted MNL and worst-case methods, respectively.

With regard to MNL, we can see that when 𝑇 = 1 – the ground truth model is a

single-class MNL model – fitting an MNL model leads to essentially perfect predic-

tions, as we would expect. However, for 𝑇 > 1, the predictions become considerably

144

CG MNL
𝑛 Generating model 𝑀 AE ME AE ME

20 MMNL(100.0, 5) 10 3.40 16.38 3.67 15.30
20 MMNL(100.0, 5) 20 1.94 10.38 3.54 14.73
20 MMNL(100.0, 5) 50 0.78 6.00 3.40 14.45
20 MMNL(100.0, 5) 100 0.41 4.50 3.37 14.24
20 MMNL(100.0, 10) 10 3.35 13.61 3.03 12.15
20 MMNL(100.0, 10) 20 2.07 9.19 2.88 11.49
20 MMNL(100.0, 10) 50 0.90 5.03 2.81 11.11
20 MMNL(100.0, 10) 100 0.47 3.62 2.78 10.96

Table 4.7: Results of revenue prediction comparison between CG and MNL ap-
proaches for 𝑛 = 20 instances with 𝐿 = 100.0, 𝑇 ∈ {5, 10}, as number of training
assortments 𝑀 varies.

less accurate and in particular, are less accurate than those produced by CG. It is also

interesting to compare MNL to CG as the amount of data (the number of training

assortments 𝑀) varies. Table 4.7 presents the same accuracy metrics as Table 4.6 as

𝑀 varies in {10, 20, 50, 100} for 𝐿 = 100.0 and 𝑇 ∈ {5, 10}. From this table, we can

see that while the prediction error of CG decreases significantly as 𝑀 increases, the

error of the fitted MNL model decreases only slightly. In words, the MNL approach

is not able to learn the true model with additional data, because it is constrained to a

single parametric form, while our approach is able to learn from this additional data.

With regard to the worst-case approach, we see from Table 4.6 that over all of

the types of instances – values of 𝐿 and 𝑇 – the column generation approach yields

significantly more accurate predictions of revenue than the worst-case approach of

[44]. For example, for 𝐿 = 5.0 and 𝑇 = 10, the average revenue error, averaged over

100 instances, is 1.77 for the column generation approach, while for the worst-case

approach it is 11.83 – approximately an order of magnitude higher. Moreover, since

each revenue prediction in the worst-case approach involves solving a large-scale LO

problem, the average time to make predictions is considerably higher; the largest

average time is on the order of 2.6 seconds per prediction, whereas for both CG and

the force-fitted MNL model it is on the order of milliseconds.

Why does the approach of [44] give less accurate predictions? There are two rea-

145

sons for this. The first reason is that the worst-case approach predicts the lowest

possible revenue; it finds the probability distribution that is consistent with the data

and that results in the lowest possible revenue. Depending on the nature of the choice

model and the data, the set of probability distributions that are consistent with the

data may be quite large and the revenue predictions may thus be quite conservative.

The second reason for the inaccuracy is that the worst-case approach predicts the low-

est possible revenue for each assortment. Although each such prediction arises from

a probability distribution that is consistent with the data, the revenue-minimizing

probability distribution may not be the same for each assortment ; thus, the ensemble

of revenue predictions produced by the worst-case approach may not be realized by

a single choice model. Due to this property, we therefore expect that the worst-case

approach may exhibit some error in the aggregate that cannot be avoided.

Lastly, we can see that averaging leads to more accurate predictions. In partic-

ular, from Table 4.6, we can see that AvgCG in all cases leads to lower average and

maximum errors than CG. This improvement can be understood from a statistical

learning perspective by considering bias and variance; namely, averaging reduces the

variance in the mean square error made by CG that is induced by the randomness of

the estimation procedure, without changing the bias.

4.5.5 Combining estimation and optimization

We now consider combining our estimation approach with our optimization approach.

To evaluate this combined approach for a given instance, we first estimate the rank-

ings 𝜎1, . . . , 𝜎𝐾 and probabilities 𝜆1, . . . , 𝜆𝐾 from the data for that instance using

our column generation procedure, and we then use these estimated rankings and

probabilities to formulate and solve problem (4.1), yielding an assortment. We then

evaluate the true revenue of the assortment under the model that generated the data

of that instance and compare it to the optimal revenue for that generating model.

Using 𝑅true(𝑆) to denote the true revenue of the assortment 𝑆 and 𝑅*
true to denote

146

the optimal true revenue, we define the optimality gap 𝐺 as

𝐺 = 100%× 𝑅*
true −𝑅true(𝑆)

𝑅*
true

. (4.6)

The smaller 𝐺 is, the better our approach performs; a value of 0% indicates that our

approach captures all of the revenue that is possible under the model that generated

the data.

Table 4.8 presents results for our approach for the same instances considered in

Section 4.5.3. (As in our other comparisons, we report the averages of each metric

over the 100 instances for each value of 𝑛 and generating model. We also re-use the

same rankings and probabilities that were estimated in Section 4.5.3 for Table 4.3.)

From this table, we can see that our approach results in an optimality gap on the

order of a few percent, using only 𝑀 = 20 training assortments. We can also see that

the total time for the combined approach – estimating the rankings and probabilities

from the transaction data and then solving the MIO – is also quite small; in the most

extreme case, it is no more than 50 seconds on average.

How does the optimality gap change as the data increases? Table 4.9 shows the

average optimality gap for the instance set from Section 4.5.3, restricted to 𝑛 = 30

and 𝐿 = 5.0, as 𝑀 varies in {10, 20, 50, 100}. We can see that as the amount of data

increases, the average optimality gap decreases. At 𝑀 = 10 training assortments, it

is on average 3-4%, but decreases to below 1.5% with 𝑀 = 100 assortments. This

table complements Table 4.4 in Section 4.5.3, which showed that increasing data led

to more accurate out-of-sample predictions; here, we have shown that more data

translates to making more effective decisions.

Finally, we consider the question of whether it is possible to overfit the model from

the perspective of optimization: namely, if we fit the training data too much, will we

make worse decisions? Table 4.10 shows how the average optimality gap varies as the

training MAE tolerance is decreased for those instances corresponding for 𝑛 = 30,

𝑇 = 10 and 𝐿 = 5.0 from Section 4.5.3. We can see that as the tolerance decreases,

the optimality gap on average in general decreases. Although the relationship is

147

Est. Opt. Total
𝑛 Generating model 𝑀 Gap (%) Time (s) Time (s) Time (s)

10 MMNL(5.0,1) 20 2.98 0.68 0.02 0.70
10 MMNL(5.0,5) 20 1.98 0.57 0.02 0.59
10 MMNL(5.0,10) 20 1.62 0.53 0.02 0.55
10 MMNL(10.0,1) 20 1.87 0.71 0.02 0.73
10 MMNL(10.0,5) 20 1.43 0.59 0.02 0.61
10 MMNL(10.0,10) 20 2.10 0.50 0.02 0.53
10 MMNL(100.0,1) 20 2.86 0.79 0.02 0.81
10 MMNL(100.0,5) 20 1.38 0.67 0.02 0.69
10 MMNL(100.0,10) 20 2.09 0.56 0.02 0.58

20 MMNL(5.0,1) 20 4.24 7.41 0.16 7.57
20 MMNL(5.0,5) 20 2.39 4.09 0.13 4.22
20 MMNL(5.0,10) 20 1.98 3.30 0.12 3.42
20 MMNL(10.0,1) 20 2.92 9.42 0.12 9.54
20 MMNL(10.0,5) 20 1.93 4.96 0.12 5.08
20 MMNL(10.0,10) 20 2.47 3.71 0.16 3.87
20 MMNL(100.0,1) 20 3.57 11.13 0.09 11.22
20 MMNL(100.0,5) 20 3.01 7.53 0.14 7.67
20 MMNL(100.0,10) 20 1.80 5.00 0.13 5.13

30 MMNL(5.0,1) 20 2.94 23.49 0.39 23.88
30 MMNL(5.0,5) 20 2.10 13.83 0.39 14.22
30 MMNL(5.0,10) 20 2.30 10.76 0.47 11.22
30 MMNL(10.0,1) 20 3.51 32.52 0.43 32.95
30 MMNL(10.0,5) 20 2.45 16.49 0.50 16.98
30 MMNL(10.0,10) 20 2.00 13.20 0.49 13.69
30 MMNL(100.0,1) 20 4.35 47.79 0.29 48.09
30 MMNL(100.0,5) 20 2.20 44.20 0.71 44.90
30 MMNL(100.0,10) 20 2.43 25.20 0.65 25.86

Table 4.8: Results of combining the estimation and optimization procedures over a
wide range of MMNL models.

148

Est. Opt. Total
𝑛 Generating model 𝑀 Gap (%) Time (s) Time (s) Time (s)

30 MMNL(5.0,1) 10 3.85 4.65 0.19 4.84
30 MMNL(5.0,1) 20 2.94 23.49 0.39 23.88
30 MMNL(5.0,1) 50 2.05 103.12 0.76 103.87
30 MMNL(5.0,1) 100 1.47 302.39 1.08 303.47
30 MMNL(5.0,5) 10 3.45 3.42 0.19 3.61
30 MMNL(5.0,5) 20 2.10 13.83 0.39 14.22
30 MMNL(5.0,5) 50 1.38 72.23 0.88 73.11
30 MMNL(5.0,5) 100 0.98 231.02 1.62 232.64
30 MMNL(5.0,10) 10 3.50 3.09 0.26 3.35
30 MMNL(5.0,10) 20 2.30 10.76 0.47 11.22
30 MMNL(5.0,10) 50 1.36 68.88 1.16 70.03
30 MMNL(5.0,10) 100 0.78 225.90 2.22 228.12

Table 4.9: Results of combining the estimation and optimization procedures as the
amount of available data (the number of training assortments 𝑀) varies.

not monotonic, the optimality gap does not dramatically worsen when the column

generation procedure is used to fit the training data to a very high level of precision.

To provide a better visualization of this relationship, we show in Figure 4-2 how the

optimality gap varies with the number of column generation iterations for a single

instance (the same one studied in Figure 4-1).

4.5.6 Comparison of combined estimation and optimization

procedure

Finally, we compare our combined estimation-optimization approach with other ap-

proaches. For each instance that we consider, we run the corresponding optimization

procedure for each choice model that we considered in Section 4.5.4: for our esti-

mated finite permutation model, we solve the MIO problem (4.1); for the fitted MNL

model, we find the revenue-ordered subset with the highest predicted revenue [89];

and for the worst-case approach, we apply the ADXOpt heuristic of [62] with at most

one removal for each product. As in Section 4.5.4, we consider optimizing the the

ranking-based model produced by a single pass of the column generation procedure

149

Train Est. Opt. Total
MAE Tol. Gap (%) Time (s) Time (s) Time (s)

0.1000 20.95 0.06 0.00 0.06
0.0500 10.87 0.29 0.01 0.30
0.0100 4.58 1.94 0.06 2.01
0.0050 2.94 3.70 0.14 3.84
0.0010 2.06 11.04 0.49 11.53
0.0005 2.11 15.42 0.59 16.00
0.0001 1.87 24.74 0.88 25.62

5.00× 10−5 1.86 27.36 0.93 28.29
1.00× 10−5 1.87 30.27 0.93 31.19
5.00× 10−6 1.90 30.72 1.01 31.74
1.00× 10−6 1.87 31.16 0.98 32.14

Table 4.10: Results of combining the estimation and optimization procedures as
training MAE tolerance varies. Results correspond to MMNL(5.0,10) instances with
𝑛 = 30 products and 𝑀 = 20 training assortments.

0

10

20

30

40

50

0 100 200 300 400 500
Iteration

O
pt

im
al

ity
 g

ap
 (

%
)

Figure 4-2: Evolution of optimality gap with each column generation iteration for one
MMNL instance with 𝑛 = 30, 𝑇 = 10, 𝐿 = 5.0 and 𝑀 = 20 training assortments.

150

as well as optimizing the averaged ranking-based model that results from ten runs of

the column generation procedure.

For the final assortment produced by each approach, we compute the gap of this

assortment relative to the true optimal revenue for the underlying ground truth model.

We record the total time required for each approach: for our approach, we record the

total of the time required for estimation (using the procedure in Section 4.4) and

optimization using the MIO formulation (4.1); for the MNL approach, we record

the total of the time required for maximum likelihood estimation and optimization

via enumeration of the revenue-ordered subsets; and for the worst-case approach,

we record the time required for optimization using ADXOpt, which includes the

time expended each time that the worst-case revenue is computed. Each objective

function evaluation for the worst-case/ADXOpt approach involves solving the worst-

case model from [44], which is a large-scale LO problem. We solve it by solving the

sampled problem using the same sampled permutations that were used to make the

revenue predictions in Section 4.5.4.

Table 4.11 reports the results of this comparison, which are averaged over the 100

instances corresponding to each value of 𝑛 and each generating model. In the table

and in the discussion that follows, we use “CG+MIO”, “AvgCG+MIO”, “MNL” and

“WC+ADXOpt” to indicate the single pass column generation and MIO combination,

the averaged column generation and MIO combination, the MNL approach and the

worst-case and ADXOpt combination, respectively.

With regard to WC+ADXOpt, CG+MIO is generally better and in a number of

cases significantly so. For example for 𝑛 = 20, 𝐿 = 5.0, 𝑇 = 10, the MIO approach

achieves revenues that are on average 2.0% from the true optimal value, while the

worst-case/ADXOpt approach achieves revenues that are on average 13.7% below the

true optimal value. In one case (𝐿 = 100.0, 𝑇 = 1) the worst-case/ADXOpt approach

yields a lower gap, although the difference is quite small (3.31% compared to 3.57%

for our approach). Furthermore, with regard to the running time, our estimation and

MIO procedure together require strikingly less time than the worst-case approach of

[44] and the ADXOpt local search heuristic of [62]; in our approach, the average time

151

CG+MIO AvgCG+MIO MNL WC+ADXOpt
𝑛 Generating model 𝑀 Gap Time Gap Time Gap Time Gap Time

(%) (s) (%) (s) (%) (s) (%) (s)

20 MMNL(5.0,1) 20 4.24 7.57 2.18 73.49 0.00 0.69 4.46 314.79
20 MMNL(5.0,5) 20 2.39 4.22 0.96 48.58 3.88 0.73 5.26 177.34
20 MMNL(5.0,10) 20 1.98 3.42 0.92 37.10 3.25 0.71 13.65 250.50
20 MMNL(10.0,1) 20 2.92 9.54 0.97 107.00 0.00 0.70 6.30 463.60
20 MMNL(10.0,5) 20 1.93 5.08 1.20 54.21 4.27 0.72 4.17 193.51
20 MMNL(10.0,10) 20 2.47 3.87 1.01 43.71 3.55 0.74 6.17 171.88
20 MMNL(100.0,1) 20 3.57 11.22 0.96 118.24 0.00 0.76 3.31 1432.92
20 MMNL(100.0,5) 20 3.01 7.67 1.43 82.41 7.89 0.79 3.72 573.27
20 MMNL(100.0,10) 20 1.80 5.13 1.04 55.29 5.03 0.80 4.10 212.08

Table 4.11: Results of comparison of combined estimation-optimization approaches
for 𝑛 = 20, MMNL(·, ·) instances.

required to both estimate the ranking-based model and optimize it is no more than 12

seconds in the most extreme case, whereas for the worst-case/ADXOpt approach, the

average time is usually on the order of 200 seconds, and in one collection of instances

(𝐿 = 10.0, 𝑇 = 5) more than 20 minutes on average.

With regard to the MNL approach, we see that for the cases where 𝑇 = 1 – the

ground truth is a single-class MNL model – fitting an MNL model to the data and

optimizing it results in an optimality gap of 0%, as we would expect. However, for

𝑇 > 1, we can see that fitting and optimizing MNL can be quite suboptimal, and

performs worse than our approach; for example with 𝐿 = 100.0, 𝑇 = 5, the average

optimality gap of our approach is 3.01% compared to 7.89% for the MNL approach. To

further compare the MNL approach to ours, we can also consider how the optimality

gap changes as the number of training assortments 𝑀 is varied. Table 4.12 shows

how the optimality gap of the MNL approach and our approach vary as 𝑀 varies

for a subset of instances. Analogously to Table 4.7, which showed that the MNL

approach does not become more accurate with more data, this table shows that the

MNL approach does not result in more optimal decisions with more data. In contrast,

our approach leads to improved decisions with more data.

Lastly, we observe that optimizing the averaged model (AvgCG+MIO) leads to

even better performance than optimizing a model from a single column generation run

(CG+MIO). For example, with 𝐿 = 10.0 and 𝑇 = 10, averaging reduces the gap from

152

CG+MIO MNL
Gap Time Gap Time

𝑛 Generating model 𝑀 (%) (s) (%) (s)

20 MMNL(100.0,5) 10 5.39 1.34 8.21 0.74
20 MMNL(100.0,5) 20 3.01 7.67 7.89 0.79
20 MMNL(100.0,5) 50 1.54 42.39 8.07 0.91
20 MMNL(100.0,5) 100 0.98 116.41 7.47 1.10
20 MMNL(100.0,10) 10 3.58 1.04 5.47 0.75
20 MMNL(100.0,10) 20 1.80 5.13 5.03 0.80
20 MMNL(100.0,10) 50 0.88 34.94 4.76 0.91
20 MMNL(100.0,10) 100 0.53 95.72 5.05 1.11

Table 4.12: Results of optimality gap comparison between MNL and CG+MIO ap-
proaches as number of training assortments 𝑀 varies, for 𝑛 = 20, MMNL instances
with 𝐿 = 100.0 and 𝑇 ∈ {5, 10}.

2.47% to 1.01%. This improvement is particularly noteworthy given the relatively low

amount of data that was available for building the model. Comparing AvgCG+MIO

to the other two methods, we can see that AvgCG+MIO delivers significantly better

performance than WC+ADXOpt in all instances and MNL in all instances with 𝑇 > 1.

Based on these results, we believe that our approach has the potential to capture

significant value in practical assortment decisions in the presence of limited data.

4.6 Conclusions

In this chapter, we have presented a practical method for transforming limited histor-

ical transaction data into effective assortment decisions. Our method consists of two

pieces: an estimation procedure for extracting a flexible, generic choice model from

the data and an assortment optimization procedure for finding the best assortment

given the estimated choice model. Modern mathematical optimization plays a key

role in both pieces: the estimation piece is based on efficiently solving a large-scale LO

problem using column generation, while the assortment optimization piece is based

on solving a practically tractable MIO problem. We show that our methodology

is scalable, flexible, leads to accurate revenue predictions and leads to near-optimal

assortments that outperform alternative parametric and non-parametric approaches.

153

There are a number of promising directions for future research. In this work we

have assumed that the estimation occurs only once before the assortment decision is

made, which is also made only once. However, in a practical setting, one may make

multiple assortment decisions over time: each assortment decision will yield new data

on the behavior of the market, allowing the firm to change the assortment over time in

response to this data. Thus, framing the problem in a dynamic setting with learning

is a valuable next step. In a different direction, one may consider how to extend the

procedure when the data is richer and more fine-grained, and when the decision of

the firm is at a similar resolution: for example, a firm may track transactions made

by individual customers and attributes of those customers, and may be able to make

assortment decisions that are targeted to individual customers. The challenge in this

setting is to estimate a model that predicts the choice probability of each item in an

assortment given a particular customer’s attributes, and to then use this model to

optimally target customers. We consider this problem from a different angle in the

next chapter.

154

Chapter 5

Personalized assortment planning via

recursive partitioning

5.1 Introduction

Personalization refers to making operational decisions that are tailored to specific

individuals. Personalization is used in a variety of business settings, most notably

in online retail. Personalization is enabled by technological advancements that both

allow for the collection of data at the individual level as well as the ability to make

decisions at the resolution of individuals.

The problem of personalized assortment planning is to decide which products

to offer to the customer, based on information about that customer. The critical

prerequisite for making such decisions is data. A firm may be in possession of large

volumes of data on historical transactions. Such data, in its most basic form, will

indicate who the customer is, what products the customer was offered and what the

customer ultimately purchased. By using this data to learn about the preferences of

individual customers, the firm can make pricing and assortment decisions that are

tailored to individuals.

The central challenge in personalization lies in effectively leveraging the data. In

particular, for each customer, the ideal situation would be to possess abundant data

on prior transactions of that customer, to use this data to infer the preferences of

155

the customer and to then make an effective assortment decision. In practice, this is

not the case. For a given customer, we may have some prior purchasing data, but

typically this data on its own is insufficient to make a conclusive statement about

the customer’s preferences or to make a sound pricing/assortment decision. However,

we have such “grains” of data for many customers. Some of these customers may be

very similar to the given customer with respect to their attributes (e.g., the same ZIP

code, age, browser, prior browsing behavior, and so on); as a result, the purchasing

data of those customers could serve in lieu of “true” data generated by the customer

of interest. Other customers may be quite different; although those customers also

provide purchasing data, this data should be discounted with regard to constructing

the preferences of the customer of interest.

In this chapter, we present an approach for making personalized assortment de-

cisions from data. The approach involves dividing the customer population into a

group of mutually disjoint segments, with the choice behavior of each segment be-

ing captured by a choice model estimated from the transactions that correspond to

that segment. The segments are constructed by recursively partitioning the customer

population according to the attributes.

We make the following two contributions:

1. We present an approach based on recursive partitioning for building a customer-

level choice model and thus for making personalized assortment decisions. This

approach has two major benefits. First, by partitioning the customer attribute

space in this way, the approach has the potential to automatically capture

complex, non-linear relationships between the choice behavior of the customers

and the customer attributes. Second, the model can be represented through a

tree, where each non-leaf node in the tree represents a split along a customer

attribute; in this way, the segments that comprise the model can be easily

interpreted and can provide managerial intuition for how different groups of

customers choose.

2. Using synthetic data, we numerically compare our tree-based personalized as-

156

sortment method to the classical “uniform” assortment strategy, where one ig-

nores the customer attribute data in estimating the choice model and offers

the same assortment to all customers. We show that our tree-based method

gives stronger decisions than the uniform strategy and achieves revenues that

are moderately close to the full information optimal (where one has access to

the true customer-level choice model).

The rest of this chapter is organized as follows. In Section 5.2, we provide a brief

overview of the relevant literature. In Section 5.3, we present the high-level model of

customers and choice behavior that we will assume for our method. In Section 5.4

we define our recursive partitioning method. In Section 5.5, we present the results

of a small computational experiment to show the benefit of using our partitioning

method. Finally, in Section 5.6, we conclude.

5.2 Literature review

Personalization is a relatively new topic in the assortment optimization literature and

more broadly in operations management. There are two major streams of papers in

this area within operations management. One is focused on dynamic assortment plan-

ning. In this setting, a retailer faces an unknown, stochastic sequence of customers

and has to decide what assortment of products to offer to each customer that arrives

so as to maximize revenue; the customers are of different types, and the retailer has a

limited inventory of each product. [11] considers this problem in the case where each

customer type corresponds to a different multinomial logit choice model; they derive

structural properties of the optimal policy in a specific case and propose a heuristic

based on their insights. [63] proposes a re-optimization scheme for choice-based net-

work revenue management that accounts for different customer types. [53] proposes

an algorithm called inventory balancing that performs well both when the arrival

of customer types follows a known, stochastic process, but also when the customer

sequence may be chosen in an adversarial way. In this body of work, one presumes

access to a predictive model that maps a customer to a choice model, and the chal-

157

lenge lies in the dynamic nature of the problem: do we offer a scarce product to the

customer at hand to potentially obtain revenue, or do we forgo the revenue and save

it for a later customer who may be more “picky”? In contrast, in our work, the focus

is on actually building the mapping from customers to choice models and ultimately

to an assortment, rather than on making good decisions dynamically with inventory

constraints.

The second stream, which is closer to our work, is based more on estimation. One

notable recent paper is [34], which proposes modeling customers by using a customer-

level logit model, where the product utilities are assumed to be linear in the attributes

of the customer; to obtain a decision for a customer, one computes the product utili-

ties for the current customer, and then finds the assortment that maximizes revenue

for that customer’s specific logit model. The paper develops guarantees on out-of-

sample prediction quality and revenues, and also shows that the algorithm provides

good performance in simulated data. This chapter considers the same problem, but

instead of assuming the utilities are linearly related to the customer attributes, we

model the utilities in a partially non-parametric way: customers still choose according

to an MNL model, but the product utility vector defining that MNL model is a piece-

wise constant function of the customer attributes. This yields two benefits. The first

is that it can potentially capture more complicated, non-linear relationships between

the product utilities and customer attributes in an automatic way (i.e., without the

modeler having to iteratively test different nonlinear transformations of the original

customer attributes). The second benefit is that our method produces a partitioning

of the customers that is amenable to interpretation; a firm can examine the segments

that arise from our method and potentially obtain insight into how customer char-

acteristics translate to choice behavior, which may be more challenging with a linear

model.

Outside of operations management, the recursive partitioning method we propose

is related to recursive partitioning as it is used in statistics and machine learning (see

[29]). Within the statistics and machine learning literature, our method is very closely

related to the idea of model-based (MOB) trees [97]. Like in regular classification

158

trees, in a MOB tree one attempts to predict a dependent variable 𝑌 using two sets

of decision variables, x and z – however, rather than performing traditional splits

using x and z, one splits only on the variables z. Then, in each leaf of the resulting

tree, one builds a parametric model to predict 𝑌 using the variables x. We shall see

that this is similar to the strategy that we will use in building our predictive model:

the customer attributes for each transaction are the z variables, which we split on,

and we then attempt to fit an MNL model in each leaf to predict the choice (𝑌) from

the assortment (x). The difference between our approach and that of [97] is that

the criterion we use to select the split is not parameter instability, but more simply

the log likelihood. It would be interesting to compare and contrast different splitting

criterions in future research. To the best of our knowledge, MOB trees where each

leaf corresponds to an MNL model have not been used previously in the marketing

and operations management literatures.

Lastly, the method we propose is related to the predictive-prescriptive framework

of [16]. In this paper, the authors propose a method for optimizing the expected cost

E[𝑐(𝑧;𝑌)], where 𝑐 depends on the decision 𝑧 and an unknown dependent variable

𝑌 , and where one has access to auxiliary/contextual information 𝑋 that can be used

to predict 𝑌 . They show that decisions from their method asymptotically converge

to the decision corresponding to the full information optimum (where one has exact

access to the exact conditional expectation E[𝑌 |𝑋 = 𝑥]). The setting in [16] is

closely related to the setting we study here: the customer attributes in our setting are

analogous to the contextual information 𝑋. The key difference between the problem

we study here and the one in [16] is that, in [16], one assumes that one can directly

observe the 𝑌 variable and that it is unaffected by the decision 𝑧. In our setting, this

is not the case, because the choice we observe in each transaction is affected by the

decision (the assortment) that was made in that transaction. One avenue to directly

applying [16] to our problem would be if we could observe not the choice given the

assortment, but rather the ranking the customer used to make his choice from the

assortment; this ranking would then be the dependent variable 𝑌 we would be trying

to predict. Unfortunately, this type of information is not accessible in most settings.

159

Bridging the framework of [16] to decisions involving customer choice is an interesting

and important direction of future research.

5.3 Model

We begin by defining the underlying customer choice model and providing additional

definitions in Section 5.3.1. In Section 5.3.2, we define the uniform assortment decision

paradigm, where the firm offers the same assortment to all customers. Then, in

Section 5.3.3, we define the paradigm of personalized assortment decisions, where the

firm offers a different assortment to each customer based on their attributes.

5.3.1 Background

We assume that there are 𝑛 products, indexed from 1 to 𝑛, that may be offered to

the customer population. We assume, as in Chapter 4, that the index 0 is used to

represent the no-purchase option. When offered an assortment 𝑆 ⊆ {1, . . . , 𝑛}, a

customer may choose any product 𝑖 from 𝑆, or may choose the no-purchase option 0.

We use 𝑟𝑖 to denote the marginal revenue of product 𝑖 ∈ {1, . . . , 𝑛}.

We assume that each customer is represented by a vector c = (𝑐1, . . . , 𝑐𝑚) of

binary attributes, that is, each 𝑐𝑗 ∈ {0, 1}. We let 𝒞 ⊆ {0, 1}𝑚 denote the set of

possible customer types (binary vectors). For each customer attribute vector c, we

assume that there is a probability 𝜇(c) that a random customer from the population

has attribute vector c.

To define the choice behavior of the population, we let P(𝑖 |𝑆; c) denote the prob-

ability that a random customer chooses the option 𝑖 ∈ 𝑆 ∪ {0} when offered the

assortment 𝑆, conditional that they exhibit the attributes c. We let P(𝑖 |𝑆) denote

the probability that a random customer chooses the option 𝑖 ∈ 𝑆 ∪ {0} when offered

the assortment 𝑆, unconditioned on the attributes of the customer. The unconditional

160

choice probability P(𝑖 |𝑆) can be written as

P(𝑖 |𝑆) =
∑︁
c∈𝒞

𝜇(c) · P(𝑖 |𝑆; c).

5.3.2 Uniform assortment decisions

In the uniform assortment setting, we ignore the fact that there exist customers who

differ in their attributes and their choice behavior. We find the best assortment with

respect to P(· | ·):

𝑆*
𝑢𝑛𝑖𝑓 = arg max

𝑆⊆{1,...,𝑛}

∑︁
𝑖∈𝑆

𝑟𝑖 · P(𝑖 |𝑆),

and we offer the assortment 𝑆*
𝑢𝑛𝑖𝑓 to all customers (hence the name “uniform”; all

customers are offered the same assortment). Under such a scheme, the expected

per-customer revenue is given by

𝑅*
𝑢𝑛𝑖𝑓 =

∑︁
𝑖∈𝑆*

𝑢𝑛𝑖𝑓

𝑟𝑖 · P(𝑖 |𝑆*
𝑢𝑛𝑖𝑓)

=
∑︁
c∈𝒞

𝜇(c) ·

⎡⎣ ∑︁
𝑖∈𝑆*

𝑢𝑛𝑖𝑓

𝑟𝑖 · P(𝑖 |𝑆*
𝑢𝑛𝑖𝑓 ; c)

⎤⎦ .

5.3.3 Personalized assortment decisions

In a personalized assortment setting, we would like to be able to change the assortment

based on the attributes of the customer. To do this, we find the best assortment for

each customer c in 𝒞:

𝑆*(c) = arg max
𝑆⊆{1,...,𝑛}

∑︁
𝑖∈𝑆

𝑟𝑖 · P(𝑖 |𝑆 ; c).

We now proceed to offer the assortment 𝑆*(c) to each customer c. Under this per-

sonalized approach, the expected per-customer revenue is given by

𝑅*
𝑝𝑒𝑟𝑠 =

∑︁
c∈𝒞

𝜇(c) ·

⎡⎣ ∑︁
𝑖∈𝑆*(c)

𝑟𝑖 · P(𝑖 |𝑆*(c); c)

⎤⎦ .

161

The following simple result shows that the personalized decision {𝑆*(c)}c∈𝒞 always

yields revenues that are at least as high as those from the uniform decision 𝑆* that

is offered to all customers:

Proposition 10 𝑅*
𝑝𝑒𝑟𝑠 ≥ 𝑅*

𝑢𝑛𝑖𝑓 .

Proof: Observe that for each c ∈ 𝒞, we have that

∑︁
𝑖∈𝑆*(c)

𝑟𝑖 · P(𝑖 |𝑆*(c); c) ≥
∑︁
𝑖∈𝑆*

𝑟𝑖 · P(𝑖 |𝑆*
𝑢𝑛𝑖𝑓 ; c),

because 𝑆*(c) maximizes
∑︀

𝑖∈𝑆 𝑟𝑖 ·P(𝑖 |𝑆; c) as a function of 𝑆. In words, the optimal

decision for customer c yields a revenue from that customer that is at least as good

as the revenue that the uniform decision would extract from that customer. We now

have that

𝑅*
𝑝𝑒𝑟𝑠 =

∑︁
c∈𝒞

𝜇(c) ·

⎡⎣ ∑︁
𝑖∈𝑆*(c)

𝑟𝑖 · P(𝑖 |𝑆*(c); c)

⎤⎦
≥
∑︁
c∈𝒞

𝜇(c) ·

[︃∑︁
𝑖∈𝑆*

𝑟𝑖 · P(𝑖 |𝑆*; c)

]︃
= 𝑅*

𝑢𝑛𝑖𝑓 ,

as required. �

5.4 The proposed method

In Section 5.3, we presented the traditional uniform and the personalized assortment

planning approaches, and we showed that the personalized assortment planning ap-

proach leads to provably higher revenues than the traditional approach. The prerequi-

site for applying the personalized assortment planning approach is the customer-level

choice model, that is, a specification of P(𝑖 |𝑆; c) for each assortment 𝑆 ⊆ {1, . . . , 𝑛},

option 𝑖 ∈ 𝑆 ∪ {0} and customer attribute vector c ∈ 𝒞. In reality, we do not know

the true customer-level model; often, we do not even know the aggregated choice

162

probabilities P(𝑖 |𝑆). In this section, we present a methodology for building an ap-

proximation of such a model from data. In Section 5.4.1, we begin by describing

the type of data that we will use to build the model. We then present our recursive

partitioning approach in Section 5.4.2.

5.4.1 Data

We assume that our historical transaction data consists of 𝑇 previous transactions.

Each transaction 𝑡 ∈ {1, . . . , 𝑇} corresponds to a single customer with attribute vector

c𝑡 ∈ 𝒞 being offered the assortment 𝒮𝑡 ⊆ {1, . . . , 𝑛} and choosing option 𝑝𝑡 ∈ 𝒮𝑡∪{0}.

As an example, consider an online retail setting where we have 𝑛 = 12 products

that we can potentially sell. With regard to the customers, we track four different at-

tributes: IsWestCoast (whether the customer is in Washington/Oregon/California),

IsMale (self-explanatory), IsChromeUser (whether the customer uses the Google

Chrome web browser) and IsSafariUser (whether the customer uses the Apple

Safari web browser). The customer attribute vector c consists of these attributes:

c = (IsWestCoast, IsMale, IsChromeUser, IsSafariUser).

In this example, we have observed 18 transactions, which are shown in Table 5.1. As

an example of how to read this table, consider transaction 𝑡 = 12. In this transaction,

the customer is a West Coast female user who uses Chrome (and not Safari); she was

offered products 4, 6, 11 and 12, and she purchased product 4. As another example, in

transaction 9, the user – a non-West Coast female Chrome user – was offered products

1, 5 and 11, and opted to not purchase anything (𝑝𝑡 = 0 for this transaction).

Note that in general, the data may be far more complicated than this. For ex-

ample, the number of products and the number of unique assortments that appear

in the data may be quite large. Similarly, the dimension of the customer attribute

vector may be much larger than in this stylized example.

163

Transaction ID (𝑡) Customer attributes (c𝑡) Offer set (𝒮𝑡) Choice (𝑝𝑡)

1 (0,0,1,0) {1, 3, 5, 6} 0
2 (0,0,1,0) {2, 3, 8} 8
3 (1,0,1,0) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 9
4 (1,1,0,1) {4, 6, 11, 12} 4
5 (1,1,0,1) {2, 3, 4, 11, 12} 4
6 (1,1,0,1) {1, 5, 11} 11
7 (0,1,0,1) {1, 5, 11} 0
8 (0,0,1,0) {1, 5, 11} 5
9 (0,0,1,0) {1, 5, 11} 0
10 (0,0,0,0) {1, 5, 11} 5
11 (1,1,1,0) {4, 6, 11, 12} 4
12 (1,0,1,0) {4, 6, 11, 12} 4
13 (1,0,1,0) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 9
14 (1,0,0,1) {9, 10, 11} 9
15 (0,1,0,1) {9, 10, 11, 12} 9
16 (0,1,0,1) {4, 6, 11, 12} 0
17 (1,1,0,1) {4, 6, 11, 12} 0
18 (1,1,1,0) {2, 5, 8, 12} 8

Table 5.1: Transaction data in example data set.

5.4.2 Building a customer-level model via recursive partition-

ing

We now present an approach for building an approximation of customer-level choice

model. Before describing the approach, let us describe the model that we will build.

In the model that we would like to build, we would like to partition the set of customer

attribute vectors 𝒞 into finitely many groups or segments of customers:

𝒞 = 𝒞1 ∪ 𝒞2 ∪ · · · ∪ 𝒞𝐾 ,

where 𝒞𝑖 ∩ 𝒞𝑗 = ∅, i.e., the groups are pairwise disjoint and do not overlap.

Each group 𝑘 corresponds to a choice model P̂(· | ·; 𝒞𝑘). For a customer with

attribute vector c, that is offered the assortment 𝑆, the probability that the customer

chooses product 𝑖 is then given

P(𝑖 |𝑆; c) =
𝐾∑︁
𝑘=1

I{c ∈ 𝒞𝑘} · P̂(𝑖 |𝑆; 𝒞𝑘)

i.e., we first resolve which group/segment the customer belongs to, and then use the

164

choice model that corresponds to that segment for making the prediction for the

customer at hand.

We now propose an algorithm for building such a model. We start with a single

segment 𝒞1 consisting of all customer attribute vectors (i.e., 𝒞1 = 𝒞) and one choice

model, P̂(· | ·; 𝒞1) that is estimated from the transactions in this single segment. Then,

we consider splitting the segment into two segments – a so-called left-hand segment

and a right-hand segment. We consider such a split for every customer attribute

𝑗 ∈ {1, . . . ,𝑚}. For each attribute 𝑗, we thus have a left-hand segment 𝒞𝐿,𝑗 and a

right-hand segment 𝒞𝑅,𝑗 that are defined as

𝒞𝐿,𝑗 = {c ∈ 𝒞1 𝑐𝑗 = 0},

𝒞𝑅,𝑗 = {c ∈ 𝒞1 𝑐𝑗 = 1},

i.e., the left-hand segment is just 𝒞1 with the constraint that attribute 𝑗 is fixed to 0,

while the right-hand segment fixes attribute 𝑗 to 1.

For each candidate split, we fit a choice model to the transactions in the left-hand

and the right-hand segment, namely, we fit P̂(· | ·; 𝒞𝐿,𝑗) and P̂(· | ·; 𝒞𝑅,𝑗) from 𝒯 𝐿,𝑗 and

𝒯 𝑅,𝑗, respectively, where 𝒯 𝐿,𝑗 is the set of left-hand transactions and 𝒯 𝑅,𝑗 is the set

of right-hand transactions. We also compute the model fit of those segments, denoted

by ℒ𝐿,𝑗 and ℒ𝑅,𝑗. By fitting two different models, one to each of 𝒯 𝐿,𝑗 and 𝒯 𝑅,𝑗 the

overall fit will be at least as good as the fit we achieve if we were constrained to

fit the same model to both partitions. We execute the split that results in the best

improvement in the model fit relative to the parent segment.

Upon executing the split, the single segment 𝒞1 is replaced by the two new seg-

ments. The procedure then repeats repeats anew from these new segments.

The algorithm is described generically as Algorithm 4.

Before continuing on, it is important to remark on several important aspects

of this algorithm. First, there are two conditions in the algorithm that are as yet

unexplained: on line 3, we only proceed to split a segment 𝒞 ′ if it is “splittable”, and

on line 10, we build a set 𝐽 of “acceptable splits”. We define these terms as follows:

165

Algorithm 4 Recursive partitioning algorithm for estimating segmented choice
model.
Require: Set of transactions {1, . . . , 𝑇}; initial segment 𝒞; segment collection 𝒫 =
{𝒞}; splittable segments 𝒫𝑆 = {𝒞}.

1: while 𝒫𝑆 ̸= ∅ do
2: for 𝒞 ′ ∈ 𝒫𝑆 do
3: if 𝒞 ′ is splittable then
4: For each customer attribute 𝑗:
5: Compute left hand customer segment 𝒞𝐿,𝑗, right hand partition 𝒞𝑅,𝑗

6: Estimate choice model P̂(· | ·; 𝒞𝐿,𝑗) from left-hand transactions, 𝒯 𝐿,𝑗

7: Compute left-hand model fit ℒ𝐿,𝑗

8: Estimate choice model P̂(· | ·; 𝒞𝑅,𝑗) from right-hand transactions, 𝒯 𝑅,𝑗

9: Compute right-hand model fit ℒ𝑅,𝑗

10: Set 𝐽 = {𝑗 𝑗 is an acceptable split attribute}
11: if 𝐽 ̸= ∅ then
12: Set 𝑗* = arg max𝑗∈𝐽(ℒ𝐿,𝑗 + ℒ𝑅,𝑗)
13: Set 𝒫𝑆 = 𝒫𝑆 ∖ {𝒞 ′} ∪ {𝒞𝐿,𝑗* , 𝒞𝑅,𝑗*}
14: Set 𝒫 = 𝒫 ∖ {𝒞 ′} ∪ {𝒞𝐿,𝑗* , 𝒞𝑅,𝑗*}
15: else
16: Set 𝒫𝑆 = 𝒫𝑆 ∖ {𝒞 ′}
17: end if
18: else
19: Set 𝒫𝑆 = 𝒫𝑆 ∖ {𝒞 ′}
20: end if
21: end for
22: end while
23: return Collection of segments 𝒫 ; collection of segment-specific choice models
{P̂(· | ·; 𝒞 ′) 𝒞 ′ ∈ 𝒫}.

166

∙ A segment 𝒞 ′ is splittable if it contains more than 𝑇min transactions.

∙ An attribute 𝑗 is an acceptable split attribute if the resulting left and right hand

segments each contain more than 𝑇min,𝑠𝑝𝑙𝑖𝑡 transactions.

The purpose of each of these checks is to ensure that the ultimate predictive model

does not overfit the transaction data.

Second, we have so far not described what exactly P̂(· | ·; 𝒞 ′) is. The choice of

parametric family is open to the modeler. In the numerical results we will consider,

we will consider using a simple multinomial logit model:

P̂(𝑖 |𝑆; 𝒞 ′) =
exp(𝑢𝑖,𝒞′)∑︀

𝑗∈𝑆∪{0} exp(𝑢𝑗,𝒞′)
,

where 𝑢𝑖,𝒞′ is the estimated utility of product 𝑖 for customers in segment 𝒞 ′. For this

particular choice of model, the left and right hand fits ℒ𝐿,𝑗 and ℒ𝑅,𝑗 are just the log

likelihoods of the MNL models that were estimated from the left hand and right hand

transaction sets 𝒯 𝐿,𝑗 and 𝒯 𝑅,𝑗 respectively.

5.5 Results

We now present a small numerical study to demonstrate the benefit of the tree-based

approach presented in Section 5.4.2. Our main insight is that the tree-based approach

can provide a significant improvement in revenue over a uniform strategy based on

the MNL model, and the revenue attained by our tree-based approach is close to the

revenue attained by a model that knows the ground truth model exactly.

We set up our experiment as follows. For a fixed value of 𝑛 and 𝑀 , we first

randomly generate the ground truth model. The ground truth model that we will

consider is a customer-specific MNL model where the utilities are additive in the

customer attributes:

P(𝑖 |𝑆; c) =
exp(

∑︀𝑀
𝑗=1 𝑢𝑖,𝑗𝑐𝑗)∑︀

𝑖′∈𝑆∪{0} exp(
∑︀𝑀

𝑗=1 𝑢𝑖′,𝑗𝑐𝑗)
.

167

Each utility value 𝑢𝑖,𝑗 is drawn uniformly at random from the interval [0, 10].

We then generate the transaction data: we generate {(c𝑡, 𝑆𝑡, 𝑝𝑡)}𝑇𝑡=1, i.e., 𝑇 tuples

consisting of the customer attributes, the offered assortment and the choice of the

customer. We generate 𝑇 = 2000 such tuples. Each customer vector c𝑡 is drawn

uniformly from 𝒞 = {0, 1}𝑀 . Each set 𝑆𝑡 is uniformly randomly selected from 20

different assortments that were uniformly selected from the set of 2𝑛 possible assort-

ments. Each choice 𝑝𝑡 is selected according to the probability distribution given by

P(· |𝑆𝑡; c𝑡).

Using the data {(c𝑡, 𝑆𝑡, 𝑝𝑡)}𝑇𝑡=1, we consider two different assortment strategies:

∙ Uniform MNL: In this strategy, we ignore the customer attribute information,

and we simply fit an MNL using the whole 𝑇 offered assortments and choices.

In doing so, we obtain a vector of utilities (𝑢0,𝑢𝑛𝑖𝑓 , 𝑢1,𝑢𝑛𝑖𝑓 . . . , 𝑢𝑛,𝑢𝑛𝑖𝑓). We find

the best optimal assortment for this utility vector:

𝑆* = arg max
𝑆⊆{1,...,𝑛}

∑︀
𝑖∈𝑆 𝑟𝑖 exp(𝑢𝑖,𝑢𝑛𝑖𝑓)∑︀
𝑖∈𝑆∪{0} exp(𝑢𝑖,𝑢𝑛𝑖𝑓)

.

The uniform strategy then simply involves offering every customer c the same

assortment 𝑆*:

𝑆*
𝑢𝑛𝑖𝑓 (c) = 𝑆*.

∙ Tree strategy: In this strategy, we build a collection of segments using Algo-

rithm 4 and a collection of segment-specific MNL models. Letting 𝒫 denote the

collection of segments and letting u𝒞′ denote the MNL utility vector of segment

𝒞 ′ ∈ 𝒫 , we define 𝑆*
𝒞′ as the optimal decision for segment 𝒞 ′:

𝑆*
𝒞′ = arg max

𝑆⊆{1,...,𝑛}

∑︀
𝑖∈𝑆 𝑟𝑖 exp(𝑢𝑖,𝒞′)∑︀
𝑖∈𝑆∪{0} exp(𝑢𝑖,𝒞′)

.

The tree strategy then involves offering every customer c the assortment corre-

sponding to the segment they are in:

𝑆*
𝑡𝑟𝑒𝑒(c) = {𝑆*

𝒞′ , if c ∈ 𝒞 ′.

168

With regard to the parameters of Algorithm 4, we set both 𝑇min = 30 and

𝑇min,𝑠𝑝𝑙𝑖𝑡 = 30.

In addition to these strategies, we also consider the optimal strategy given knowledge

the ground truth model: for each c, we compute

𝑆*
𝐺𝑇𝑂(c) = arg max

𝑆⊆{1,...,𝑛}

∑︁
𝑖∈𝑆

𝑟𝑖 · P(𝑖 |𝑆; c).

We refer to this strategy as the ground truth optimal (GTO) strategy. (Note

that the GTO strategy knows the choice model conditional on the customer attribute

vector c, but is not able to perfectly predict the customer’s choice given an assortment

𝑆 and customer attribute vector c. For the ground truth MNL model, the later type

of requirement is akin to knowing the random Gumbel errors in the random utility

specification of the MNL model, or equivalently, knowing the ranking the customer

will use to choose. A strategy that can anticipate the random errors/rankings will

lead to higher out-of-sample revenues than one that can only anticipate the precise

choice model.)

To evaluate each strategy, we draw 𝑇𝑂𝑂𝑆 = 10, 000 customers to test each strategy

out-of-sample (OOS). For each 𝑡 ∈ {1, . . . , 𝑇𝑂𝑂𝑆}, we draw a customer attribute

vector c𝑡,𝑂𝑂𝑆. For each such customer, we draw the rank list corresponding to the

𝑛 + 1 options according to the ground truth model. Mathematically, letting 𝜎𝑡,𝑂𝑂𝑆

denote the rank list of the out-of-sample customer 𝑡, the average out-of-sample revenue

𝑅𝑂𝑂𝑆(𝑆*) of a policy 𝑆* that maps customer attributes to assortments is given by

𝑅𝑂𝑂𝑆(𝑆*) = 1/𝑇𝑂𝑂𝑆 ·
𝑇𝑂𝑂𝑆∑︁
𝑡=1

∑︁
𝑖∈𝑆*(c𝑡,𝑂𝑂𝑆)

𝑟𝑖 · I{𝑖 = arg min
𝑖′∈𝑆*(c𝑡,𝑂𝑂𝑆)∪{0}

𝜎𝑡,𝑂𝑂𝑆(𝑖′)}.

For a strategy 𝑆*, we compute its optimality gap relative to the GTO strategy:

𝐺 = 100%× 𝑅𝑂𝑂𝑆(𝑆*
𝐺𝑇𝑂)−𝑅𝑂𝑂𝑆(𝑆*)

𝑅𝑂𝑂𝑆(𝑆*
𝐺𝑇𝑂)

.

Table 5.2 displays the results for 20 random instances – where each instance is

169

Uniform (𝑇 = 2000) Tree (𝑇 = 500) Tree (𝑇 = 1000) Tree (𝑇 = 2000) GTO
Inst. Rev ($) Gap (%) Rev ($) Gap (%) Rev ($) Gap (%) Rev Gap (%) Rev ($)

1 53.5 6.32 56.3 1.49 56.4 1.26 57.1 0.05 57.2
2 83.4 4.91 84.3 3.92 80.6 8.17 83.3 5.09 87.7
3 61.1 5.87 64.3 0.92 64.8 0.23 63.5 2.1 64.9
4 48 10.55 52.1 2.76 53.2 0.8 51.8 3.46 53.6
5 33.2 8.52 32.4 10.55 35.2 2.75 33.5 7.51 36.2
6 66.7 14.09 75.1 3.26 73.4 5.5 77.5 0.17 77.6
7 86.1 2.53 88.2 0.15 88.2 0.09 88.1 0.23 88.3
8 62.6 6.61 62 7.58 63.2 5.83 63.3 5.59 67.1
9 55.6 15.1 63.5 2.98 60.7 7.36 64.2 1.92 65.5
10 57.2 23.5 70.1 6.15 69.4 7.1 69.3 7.3 74.7
11 42.5 7.45 40.4 12.07 42.6 7.3 42.6 7.31 46
12 47.6 17.86 53.7 7.37 53.3 8.06 57.9 0.07 57.9
13 76.4 2.57 74.2 5.25 71.1 9.32 67.4 13.99 78.4
14 72.8 1.08 70.8 3.8 70.7 3.93 71.8 2.42 73.6
15 78 10.5 78.3 10.16 81.3 6.72 82.3 5.6 87.2
16 82.6 0.75 82 1.51 83 0.34 83.2 0.02 83.2
17 96.8 0.43 94.8 2.51 96.7 0.5 95 2.32 97.2
18 72.3 9.06 76.2 4.07 77 3.15 78.4 1.4 79.5
19 58.2 3.7 58.8 2.73 59.5 1.44 59.9 0.77 60.4
20 61.4 6.26 63.8 2.65 64.3 1.87 65 0.8 65.5

Avg. – 7.88 – 4.6 – 4.09 – 3.41 –

Table 5.2: Results for 𝑛 = 10, 𝑀 = 5. (“Rev” indicates the out-of-sample revenue;
“Gap” indicates the gap metric 𝐺.)

defined by a random ground truth model, random training transaction set and random

out-of-sample customer and ranking sets generated as detailed above – with 𝑛 = 10

products and 𝑀 = 5 customer attributes. We compare the uniform MNL strategy

that uses all 𝑇 = 2000 transactions to the tree strategy with 𝑇 = 500, 𝑇 = 1000 and

𝑇 = 2000 transactions. We can see from this table that in general, the tree strategy

outperforms the uniform MNL strategy and leads to lower average optimality gaps.

More precisely, the uniform MNL with all 2000 transactions achieves an average

optimality gap of about 7.9% over the 20 instances, while the tree strategies with

500, 1000 and 2000 transactions achieve optimality gaps of 4.6%, 4.1% and 3.4%

respectively; in other words, the tree strategy is able to substantially improve on the

uniform MNL policy. Note also that the optimality gaps are relatively small; with

𝑇 = 2000 transactions, the tree strategy already achieves about 96.6% of the revenue

of the GTO strategy, which is the best that we can hope for in this problem.

170

5.6 Conclusion

In this chapter, we presented a promising new method for making personalized as-

sortment decisions. The method is based on building a new customer-level choice

model through the technique of recursive partitioning that has been successfully used

in classification and regression problems, and using the choice probability predictions

produced by this model to guide the selection of an assortment. We showed in nu-

merical results with simulated data that this approach outperforms the traditional

uniform approach and achieves revenues that are moderately close to the best possible

revenue that would be possible if one knew the exact choice model describing each

individual customer.

171

172

Chapter 6

Conclusions

In this thesis we have studied following question: how do we transform data and

models into effective decisions? We have attempted to provide an answer to this

question in the following, concrete settings:

1. In Chapter 2, we proposed a new type of linear optimization formulation for a

large class of MDPs called decomposable MDPs, and a high quality heuristic

derived from this formulation. We showed that the formulation improves on

the state of the art both theoretically, in that it provides tighter bounds on the

optimal value function than three other ADP formulations, and practically, in

that the heuristic policy provides expected rewards that are considerably closer

to optimality than alternate ADP approaches.

2. In Chapter 3, we proposed a new approach for making product line decisions un-

der uncertainty. The approach is based on identifying a set of models that could

represent the choice behavior of the customer population, and making decisions

that optimize against the worst-case expected per-customer revenue taken over

this set of models. Using real conjoint data, we showed that traditional product

line approaches can lead to poor product lines when the choice model is mis-

specified, while our approach in contrast can lead to better performance in the

presence of uncertainty.

3. In Chapter 4, we proposed a new two-step approach for making assortment

173

decisions from limited transaction data that involves estimating a ranking-based

model of choice, and then finding the assortment that maximizes the expected

revenue under this model. We showed through experiments with synthetic data

that this type of approach is scalable and outperforms alternative parametric

and non-parametric proposals in both out-of-sample predictive accuracy and

expected revenue.

4. In Chapter 5, we proposed a new type of segmentation approach for making per-

sonalized assortment decisions using data on the choices of previous customers,

as well as their personal attributes. Through an experiment with synthetic data,

we show that such an approach is able to provide an improvement over a “uni-

form” approach that offers the same assortment to all customers, and achieves

revenues that are moderately close to the best achievable revenue.

174

Appendix A

Proofs, Counterexamples and

Derivations for Chapter 2

A.1 Proofs

A.1.1 Proof of Proposition 1

This result follows directly from observations in [76]. To see this, observe that prob-

lem (2.2) can be expressed as a type of doubly infinite linear optimization problem

(problem (P) in [76]) where each variable appears in finitely many constraints and

each constraint involves only finitely many variables. Note that problem (P) in [76]

contains explicit upper bounds on all of the variables, which problem (2.2) does not

appear to have; however, note that the variables in problem (2.2), by virtue of the con-

straints, are upper bounded by 1. In this way, problem (2.2) can be cast as problem

(P) from [76]. Assumption A of [76] holds (that the feasible region of problem (2.2)

is nonempty; this will be established in the proof of Proposition 2, where we will

directly construct a feasible solution to problem (2.2)). Assumption B of [76] also

holds (that the objective function is uniformly convergent on the feasible region; this

holds due to the discounting in the objective function). With these two assumptions

and following the argument in Section 2 of [76], it follows that there exists an optimal

solution to problem (2.2). �

175

A.1.2 Proof of Proposition 2

To prove this, we will construct a feasible solution to problem (2.2) whose objective

value in (2.2) is the same as 𝐽*(s). For each 𝑡 ∈ {1, 2, . . . }, set

𝑥𝑚
𝑘𝑎(𝑡) = P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎)

𝐴𝑎(𝑡) = P(𝜋*(s(𝑡)) = 𝑎),

where {s(𝑡)}∞𝑡=1 is the stochastic process of the system state that starts in state

s = (𝑠1, . . . , 𝑠𝑀), operated according to the optimal policy 𝜋* that yields the optimal

value function 𝐽*(·). We now verify that the solution (x,A) is indeed feasible.

For constraint (2.2b), we have for any 𝑚 ∈ {1, . . . ,𝑀}, 𝑗 ∈ 𝒮𝑚 and 𝑡 ∈ {2, 3, 4, . . . },

∑︁
𝑎∈𝒜

𝑥𝑚
𝑗𝑎(𝑡) =

∑︁
𝑎∈𝒜

P(𝑠𝑚(𝑡) = 𝑗, 𝜋*(s(𝑡)) = 𝑎)

= P(𝑠𝑚(𝑡) = 𝑗)

=
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎̃∈𝒜

P(𝑠𝑚(𝑡) = 𝑗, 𝑠𝑚(𝑡− 1) = 𝑘, 𝜋*(s(𝑡− 1)) = 𝑎̃)

=
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎̃∈𝒜

P(𝑠𝑚(𝑡) = 𝑗 | 𝑠𝑚(𝑡− 1) = 𝑘, 𝜋*(s(𝑡− 1)) = 𝑎̃)

· P(𝑠𝑚(𝑡− 1) = 𝑘, 𝜋*(s(𝑡− 1)) = 𝑎̃)

=
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎̃∈𝒜

𝑝𝑚𝑘𝑗𝑎 · 𝑥𝑚
𝑘𝑎(𝑡− 1)

where the first equality follows by the definition of 𝑥𝑚
𝑘𝑎(𝑡), the second and third equal-

ities follow by the countable additivity of probability and the law of total probability,

the fourth by conditioning on the state and action at 𝑡−1 and the final step by using

the definition of 𝑝𝑚𝑘𝑗𝑎 and 𝑥𝑚
𝑘𝑎(𝑡).

Similarly, for constraint (2.2c), for any 𝑎 ∈ {1, . . . ,𝑀} and 𝑡 ∈ {1, 2, . . . } we have

∑︁
𝑘∈𝒮𝑚

𝑥𝑚
𝑘𝑎(𝑡) =

∑︁
𝑘∈𝒮𝑚

P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎) = P(𝜋*(s(𝑡)) = 𝑎) = 𝐴𝑎(𝑡).

176

For constraint (2.2d), our earlier reasoning gives us that for any 𝑚 ∈ {1, . . . ,𝑀},

𝑘 ∈ 𝒮𝑚,

𝑀∑︁
𝑎=1

𝑥𝑚
𝑘,𝑎 =

∑︁
𝑎∈𝒜

P(𝑠𝑚(1) = 𝑘, 𝜋*(s(1)) = 𝑎) = P(𝑠𝑚(1) = 𝑘) = 𝛼𝑚
𝑘 (s).

Lastly, since x and A are defined as probabilities, it follows that

𝑥𝑚
𝑘𝑎(𝑡) ≥ 0, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑎 ∈ 𝒜, 𝑘 ∈ 𝒮𝑚, 𝑡 ∈ {1, 2, . . . },

𝐴𝑎(𝑡) ≥ 0, ∀ 𝑎 ∈ 𝒜, 𝑡 ∈ {1, 2, . . . }.

This establishes that (x,A) is a feasible solution to (2.2). We will now verify that its

objective value is identical to 𝐽*(s). By the definition of the optimal value function,

we have

𝐽*(s) = E

[︃
∞∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝛽𝑡−1 · 𝑔𝑚𝑠𝑚(𝑡),𝜋*(s(𝑡))

]︃
=

∞∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝛽𝑡−1 · E
[︀
𝑔𝑚𝑠𝑚(𝑡),𝜋*(s(𝑡))

]︀
,

where the second step follows by the monotone convergence theorem (since 𝛽 and all

the 𝑔𝑚𝑘𝑎 values are nonnegative) and the linearity of expectation. Observe now that

E[𝑔𝑚𝑠𝑚(𝑡),𝜋*(s(𝑡))] =
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑔𝑚𝑘𝑎 · P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎) =
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑔𝑚𝑘𝑎 · 𝑥𝑚
𝑘𝑎(𝑡).

We therefore have

𝐽*(s) =
∞∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝛽𝑡−1 · E
[︀
𝑔𝑚𝑠𝑚(𝑡),𝜋*(s(𝑡))

]︀
=

∞∑︁
𝑡=1

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑡−1 · 𝑔𝑚𝑘𝑎 · 𝑥𝑚
𝑘𝑎,

in other words, the value function evaluated at the starting state s is exactly the

objective value of the (x,A) solution that we constructed. Since (x,A) is a feasible

solution for (2.2), it follows that 𝐽*(s) ≤ 𝑍*(s) which is the required result. �

177

A.1.3 Proof of Proposition 3

Using the same type of reasoning that we used in the proof of Proposition 2 to

show that the objective function of the constructed solution was equal to 𝐽*(s),

one can show that the objective value of the optimal fluid solution (x,A) is equal

to E
[︁∑︀∞

𝑡=1

∑︀𝑀
𝑚=1 𝛽

𝑡−1 · 𝑔𝑚𝑠𝑚(𝑡),𝜋(𝑡,s(𝑡))

]︁
, i.e., the expected discounted reward when the

system is operated according to the policy 𝜋 and the system starts in state s. Since

𝐽*(s) is the maximum over all policies of the expected discounted reward of the

system, it follows that 𝐽*(s) is an upper bound on E
[︁∑︀∞

𝑡=1

∑︀𝑀
𝑚=1 𝛽

𝑡−1 · 𝑔𝑚𝑠𝑚(𝑡),𝜋(𝑡,s(𝑡))

]︁
,

and thus that 𝐽*(s) ≥ 𝑍*(s). �

A.1.4 Proof of Theorem 1

Let s ∈ 𝒮, and let (x(s),A(s)) be the solution of the corresponding fluid problem.

To prove the theorem, we will show that for state s, any action 𝑎 with 𝐴𝑎(1, s) > 0

must be greedy with respect to the optimal value function 𝐽*. By standard results

in dynamic programming theory (see, e.g., [12]), this is sufficient to prove that 𝜋 as

we have defined it is an optimal policy.

By Propositions 2 and 3, we have that 𝑍*(s) = 𝐽*(s). Since (x(s),A(s)) is achiev-

able, let 𝜋̄ be the (possibly nondeterministic, nonstationary) policy that achieves it

and let {s(𝑡)}∞𝑡=1 be the stochastic process of the system state when operated accord-

ing to 𝜋̄. We then have that

𝐽*(s) = 𝑍*(s)

= E

[︃
∞∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝛽𝑡−1𝑔𝑚𝑠𝑚(𝑡),𝜋̄(𝑡,s(𝑡))

]︃

=
𝑀∑︁

𝑚=1

E[𝑔𝑚𝑠𝑚(1),𝜋̄(s(1),1)] + E

[︃
∞∑︁
𝑡=2

𝑀∑︁
𝑚=1

𝛽𝑡−1𝑔𝑚𝑠𝑚(𝑡),𝜋̄(𝑡,s(𝑡))

]︃

=
𝑀∑︁

𝑚=1

E[𝑔𝑚𝑠𝑚(1),𝜋̄(s(1),1)] +
∑︁
s̃∈𝒮

E

[︃
∞∑︁
𝑡=2

𝑀∑︁
𝑚=1

𝛽𝑡−1𝑔𝑚𝑠𝑚(𝑡),𝜋̄(𝑡,s(𝑡)) s(2) = s̃

]︃
· P(s(2) = s̃)

=
𝑀∑︁

𝑚=1

∑︁
𝑎∈𝒜

𝑔𝑚𝑠𝑚,𝑎𝐴𝑎(1, s) + 𝛽 ·
∑︁
s̃∈𝒮

E

[︃
∞∑︁
𝑡=2

𝑀∑︁
𝑚=1

𝛽𝑡−2𝑔𝑚𝑠𝑚(𝑡),𝜋̄(𝑡,s(𝑡)) s(2) = s̃

]︃
· P(s(2) = s̃)

178

where the second step follows since (x(s),A(s)) is achieved by 𝜋̄; the third step by

breaking up the infinite sum; the fourth step by conditioning on the second state; and

the fifth step by using the fact that 𝐴𝑎(1, s) = P(𝜋̄(s(1), 1) = 𝑎) and factoring out a

𝛽. Now observe that we must have

𝑀∑︁
𝑚=1

∑︁
𝑎∈𝒜

𝑔𝑚𝑠𝑚,𝑎𝐴𝑎(1, s) + 𝛽 ·
∑︁
s̃∈𝒮

E

[︃
∞∑︁
𝑡=2

𝑀∑︁
𝑚=1

𝛽𝑡−2𝑔𝑚𝑠𝑚(𝑡),𝜋̄(𝑡,s(𝑡)) s(2) = s̃

]︃
· P(s(2) = s̃)

=
𝑀∑︁

𝑚=1

∑︁
𝑎∈𝒜

𝑔𝑚𝑠𝑚,𝑎𝐴𝑎(1, s) + 𝛽 ·
∑︁
s̃∈𝒮

𝐽*(s̃) · P(s(2) = s̃). (A.1)

This follows because the left hand side is less than or equal to the right hand side,

which is true because

E

[︃
∞∑︁
𝑡=2

𝑀∑︁
𝑚=1

𝛽𝑡−2𝑔𝑚𝑠𝑚(𝑡),𝜋̄(𝑡,s(𝑡)) s(2) = s̃

]︃
≤ 𝐽*(s̃)

(here, the left hand side is the value of running policy 𝜋̄ from time 2 on at state s̃,

which is clearly at most 𝐽*(s̃)). Note also that the left hand side in equation (A.1)

cannot be strictly less than the right hand side, because the right hand side value is

achieved by a policy (follow 𝜋̄ at 𝑡 = 1, then follow any optimal policy from 𝑡 = 2 on);

by our earlier manipulation, the left hand side in equation (A.1) is equal to 𝐽*(s), so

a strict inequality would imply a policy that achieves a better value than the optimal

value. This is not possible, so equation (A.1) must hold.

Thus, so far, we have that

𝐽*(s) =
𝑀∑︁

𝑚=1

∑︁
𝑎∈𝒜

𝑔𝑚𝑠𝑚,𝑎𝐴𝑎(1, s) + 𝛽 ·
∑︁
s̃∈𝒮

𝐽*(s̃) · P(s(2) = s̃). (A.2)

Since the components are independent, we can write P(s(2) = s̃) as

P(s(2) = s̃) =
∑︁
𝑎∈𝒜

𝐴𝑎(1, s) ·
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎

179

and simplify equation (A.2) as follows:

𝐽*(s) =
𝑀∑︁

𝑚=1

∑︁
𝑎∈𝒜

𝑔𝑚𝑠𝑚,𝑎𝐴𝑎(1, s) + 𝛽 ·
∑︁
s̃∈𝒮

𝐽*(s̃) ·

(︃∑︁
𝑎∈𝒜

𝐴𝑎(1, s) ·
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎

)︃

=
∑︁
𝑎∈𝒜

𝐴𝑎(1, s) ·

(︃
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚(1),𝑎 + 𝛽 ·
∑︁
s̃∈𝒮

𝐽*(s̃) ·
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎

)︃
. (A.3)

Now recall that 𝐽*(s) is the optimal value function, so it must satisfy the Bellman

equation:

𝐽*(s) = max
𝑎∈𝒜

(︃
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚,𝑎 + 𝛽 ·
∑︁
s̃∈𝒮

𝐽*(s̃) ·
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎

)︃
.

Given these two expressions, it must be that for any 𝑎̄ with 𝐴𝑎̄(1, s) > 0, we have

𝑀∑︁
𝑚=1

𝑔𝑚𝑠𝑚(1),𝑎̄ +𝛽 ·
∑︁
s̃∈𝒮

𝐽*(s̃) ·
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎̄ = max
𝑎∈𝒜

(︃
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚,𝑎 + 𝛽 ·
∑︁
s̃∈𝒮

𝐽*(s̃) ·
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎

)︃
;

i.e., that 𝑎̄ is an action that is greedy with respect to the optimal value function 𝐽*.

This must be true; by the definition of the maximum, the right hand side is clearly

greater than or equal to the left (this is true for any 𝑎̄ ∈ 𝒜, not only those with

𝐴𝑎̄(1, s) > 0). It cannot be strictly greater, because then equation (A.3) could not

hold (the right hand side in (A.3) would have to be strictly less than 𝐽*(s), as the

𝐴𝑎(1, s) values are nonnegative and sum to one).

Finally, note that the action 𝑎 = arg max𝑎̄∈𝒜𝐴𝑎̄(1, s) clearly satisfies 𝐴𝑎(1, s) > 0,

since the 𝐴𝑎(𝑡) variables are nonnegative and have unit sum. Thus, the action 𝑎 =

arg max𝑎̄∈𝒜 𝐴𝑎̄(1, s) must be greedy with respect to the optimal value function. This

establishes that the policy 𝜋, as defined in the statement of Theorem 1, must be an

optimal policy, which is the required result. �

180

A.1.5 Proof of Proposition 4

Proof of Part (a)

To prove (a), we will define solution to problem (2.3) that (i) is feasible for prob-

lem (2.3) and (ii) achieves an objective value in (2.3) that is equal to 𝐽*(s). Since

𝑍*
𝑇 (s) is the optimal value of problem (2.3) and our constructed feasible solution

achieves a value of 𝐽*(s), it will follow that 𝐽*(s) ≤ 𝑍*
𝑇 (s).

Let 𝜋* be the optimal policy that solves problem (2.1) and let us consider the

following solution for problem (2.3):

𝑥𝑚
𝑘𝑎(𝑡) = P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎), ∀ 𝑡 ∈ {1, . . . , 𝑇},

𝐴𝑎(𝑡) = P(𝜋*(s(𝑡)) = 𝑎), ∀ 𝑡 ∈ {1, . . . , 𝑇},

𝑥𝑚
𝑘𝑎(𝑇 + 1) =

∞∑︁
𝑡=𝑇+1

𝛽𝑡−(𝑇+1) · P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎),

𝐴𝑎(𝑇 + 1) =
∞∑︁

𝑡=𝑇+1

𝛽𝑡−(𝑇+1) · P(𝜋*(s(𝑡)) = 𝑎),

where {s(𝑡)}∞𝑡=1 is the stochastic process of the complete system that begins in state

s at 𝑡 = 1 and is operated according to policy 𝜋*.

We first need to show that the proposed (x,A) is feasible. The same steps used

in the proof of Proposition 2 can be used to verify that constraints (2.3b), (2.3d) (for

𝑡 ∈ {1, . . . , 𝑇}) and (2.3e) hold. To verify that constraint (2.3c) is satisfied, we apply

similar reasoning as for constraint (2.3b), but in a long-run discounted way:

∑︁
𝑎∈𝒜

𝑥𝑚
𝑗𝑎(𝑇 + 1) =

∑︁
𝑎∈𝒜

∞∑︁
𝑡=𝑇+1

𝛽𝑡−(𝑇+1) · P(𝑠𝑚(𝑡) = 𝑗, 𝜋*(s(𝑡)) = 𝑎)

=
∞∑︁

𝑡=𝑇+1

𝛽𝑡−(𝑇+1)
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

P(𝑠𝑚(𝑡) = 𝑗 | 𝑠𝑚(𝑡− 1) = 𝑘, 𝜋*(s(𝑡)) = 𝑎)

· P(𝑠𝑚(𝑡− 1) = 𝑘, 𝜋*(s(𝑡)) = 𝑎)

=
∞∑︁

𝑡=𝑇+1

𝛽𝑡−(𝑇+1)
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 · P(𝑠𝑚(𝑡− 1) = 𝑘, 𝜋*(s(𝑡− 1)) = 𝑎)

181

=
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 · P(𝑠𝑚(𝑇) = 𝑘, 𝜋*(s(𝑇)) = 𝑎)

+ 𝛽 ·
∞∑︁

𝑡=𝑇+2

𝛽𝑡−(𝑇+2)
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 · P(𝑠𝑚(𝑡− 1) = 𝑘, 𝜋*(s(𝑡− 1)) = 𝑎)

=
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 · P(𝑠𝑚(𝑇) = 𝑘, 𝜋*(s(𝑇)) = 𝑎)

+ 𝛽 ·
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎

[︃
∞∑︁

𝑡=𝑇+1

𝛽𝑡−(𝑇+1) · P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎)

]︃
=
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 · 𝑥𝑚
𝑘𝑎(𝑇) + 𝛽 ·

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎𝑥
𝑚
𝑘𝑎(𝑇 + 1).

To verify constraint (2.3d) for 𝑡 = 𝑇 + 1, observe that

∑︁
𝑘∈𝒮𝑚

𝑥𝑚
𝑘𝑎(𝑇 + 1) =

∑︁
𝑘∈𝒮𝑚

∞∑︁
𝑡=𝑇+1

𝛽𝑡−(𝑇+1) · P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎)

=
∞∑︁

𝑡=𝑇+1

𝛽𝑡−(𝑇+1)
∑︁
𝑘∈𝒮𝑚

P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎)

=
∞∑︁

𝑡=𝑇+1

𝛽𝑡−(𝑇+1) · P(𝜋*(s(𝑡)) = 𝑎)

= 𝐴𝑎(𝑇 + 1).

Lastly, by our construction of x and A, it is clear that both are nonnegative,

satisfying the non-negativity constraints of problem (2.3).

Now, let us consider the objective value of (x,A); we have

E

[︃
∞∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝛽𝑡−1𝑔𝑚𝑠𝑚(𝑡),𝜋*(s(𝑡))

]︃
= E

[︃
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝛽𝑡−1𝑔𝑚𝑠𝑚(𝑡),𝜋*(s(𝑡))

]︃

+ 𝛽𝑇+1 · E

[︃
∞∑︁

𝑡=𝑇+1

𝑀∑︁
𝑚=1

𝛽𝑡−(𝑇+1)𝑔𝑚𝑠𝑚(𝑡),𝜋*(s(𝑡))

]︃

=
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

E
[︀
𝑔𝑚𝑠𝑚(𝑡),𝜋*(s(𝑡))

]︀
+ 𝛽𝑇+1

∞∑︁
𝑡=𝑇+1

𝑀∑︁
𝑚=1

𝛽𝑡−(𝑇+1)E
[︀
𝑔𝑚𝑠𝑚(𝑡),𝜋*(s(𝑡))

]︀
182

=
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝛽𝑡−1

(︃∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑔𝑚𝑘𝑎 · P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎)

)︃
+ 𝛽𝑇+1·

∞∑︁
𝑡=𝑇+1

𝛽𝑡−(𝑇+1)

(︃∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑔𝑚𝑘𝑎 · P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎)

)︃

=
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑡−1𝑔𝑚𝑘𝑎𝑥
𝑚
𝑘𝑎(𝑡)

+ 𝛽𝑇+1·∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑔𝑚𝑘𝑎

(︃
∞∑︁

𝑡=𝑇+1

𝛽𝑡−(𝑇+1) · P(𝑠𝑚(𝑡) = 𝑘, 𝜋*(s(𝑡)) = 𝑎)

)︃

=
𝑇+1∑︁
𝑡=1

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑡−1𝑔𝑚𝑘𝑎𝑥
𝑚
𝑘𝑎(𝑡)

i.e., the objective value of the (x,A) solution is identical to the optimal expected

discounted value E[
∑︀∞

𝑡=1

∑︀𝑀
𝑚=1 𝛽

𝑡−1𝑔𝑚𝑠𝑚(𝑡),𝜋*(s(𝑡))], which is exactly 𝐽*(s). Since (x,A)

is feasible, it follows that this objective value is less than 𝑍*
𝑇 (s), which establishes

that 𝐽*(s) ≤ 𝑍*
𝑇 (s) and concludes the proof of part (a) of the Theorem. �

Proof of Part (b)

To prove (b), we will use the optimal solution of problem (2.3) with a horizon of 𝑇 +1

to construct a solution for problem (2.3) with a horizon of 𝑇 that (i) is feasible for

problem (2.3) with 𝑇 and (ii) achieves an objective value of 𝑍*
𝑇+1(s) in problem (2.3).

As in part (a) of the theorem, it will then follow that 𝑍*
𝑇 (s) ≥ 𝑍*

𝑇+1(s).

Let (x̄, Ā) be the optimal solution of problem (2.3) with horizon 𝑇 + 1. Define

the solution (x,A) to problem (2.3) with horizon 𝑇 as follows:

𝑥𝑚
𝑘𝑎(𝑡) = 𝑥̄𝑚

𝑘𝑎(𝑡), ∀𝑡 ∈ {1, . . . , 𝑇},

𝑥𝑚
𝑘𝑎(𝑇 + 1) = 𝑥̄𝑚

𝑘𝑎(𝑇 + 1) + 𝛽 · 𝑥̄𝑚
𝑘𝑎(𝑇 + 2),

𝐴𝑎(𝑡) = 𝐴𝑎(𝑡), ∀𝑡 ∈ {1, . . . , 𝑇},

𝐴𝑎(𝑇 + 1) = 𝐴𝑎(𝑇 + 1) + 𝛽 · 𝐴𝑎(𝑇 + 2).

183

By construction, (x,A) satisfy constraints (2.3b), (2.3e), (2.3f) and (2.3g). The

solution (x,A) also satisfies constraint (2.3d) for 𝑡 = 1 to 𝑡 = 𝑇 . To show that

constraint (2.3c) holds, observe that

∑︁
𝑎∈𝒜

𝑥𝑚
𝑗𝑎(𝑇 + 1) =

∑︁
𝑎∈𝒜

𝑥̄𝑚
𝑗𝑎(𝑇 + 1) + 𝛽

∑︁
𝑎∈𝒜

𝑥̄𝑚
𝑗𝑎(𝑇 + 2)

=
∑︁
𝑎∈𝒜

∑︁
𝑘∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑥̄
𝑚
𝑘𝑎(𝑇)

+ 𝛽

(︃∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑥̄
𝑚
𝑘𝑎(𝑇 + 1) + 𝛽

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎𝑥̄
𝑚
𝑘𝑎(𝑇 + 2)

)︃
=
∑︁
𝑎∈𝒜

∑︁
𝑘∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑥̄
𝑚
𝑘𝑎(𝑇) + 𝛽

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎 (𝑥̄𝑚
𝑘𝑎(𝑇 + 1) + 𝛽𝑥̄𝑚

𝑘𝑎(𝑇 + 2))

=
∑︁
𝑎∈𝒜

∑︁
𝑘∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑥
𝑚
𝑘𝑎(𝑇) + 𝛽

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑥
𝑚
𝑘𝑎(𝑇 + 1).

To show that constraint (2.3d) for 𝑡 = 𝑇 + 1, we have that

∑︁
𝑘∈𝒮𝑚

𝑥𝑚
𝑘𝑎(𝑇 + 1) =

∑︁
𝑘∈𝒮𝑚

𝑥̄𝑚
𝑘𝑎(𝑇 + 1) + 𝛽

∑︁
𝑘∈𝒮𝑚

𝑥̄𝑚
𝑘𝑎(𝑇 + 2)

= 𝐴𝑎(𝑇 + 1) + 𝛽𝐴𝑎(𝑇 + 2)

= 𝐴𝑎(𝑇 + 1).

Now, consider the objective of (x,A):

𝑇+1∑︁
𝑡=1

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑡−1 · 𝑔𝑚𝑘𝑎 · 𝑥𝑚
𝑘𝑎(𝑡) =

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑡−1 · 𝑔𝑚𝑘𝑎 · 𝑥̄𝑚
𝑘𝑎(𝑡)

+
𝑀∑︁

𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑇 · 𝑔𝑚𝑘𝑎𝑥̄𝑚
𝑘𝑎(𝑇 + 1)

+
𝑀∑︁

𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑇+1𝑔𝑚𝑘𝑎𝑥̄
𝑚
𝑘𝑎(𝑇 + 2)

=
𝑇+2∑︁
𝑡=1

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑡−1𝑔𝑚𝑘𝑎𝑥̄
𝑚
𝑘𝑎(𝑡)

which, by definition of (x̄, Ā), is exactly 𝑍*
𝑇+1(s). Since (x,A) is a feasible solution

184

for problem (2.3) with horizon 𝑇 , it follows that 𝑍*
𝑇 (s) ≥ 𝑍*

𝑇+1(s), which concludes

the proof of (b). �

A.1.6 Proof of Theorem 2

Proof of Part (a)

To prove the result, we will show that 𝑍*
𝐴𝐿𝑂(s) ≤ 𝑍*

𝐴𝐿𝑅(s) and 𝑍*
𝐴𝐿𝑂(s) ≥ 𝑍*

𝐴𝐿𝑅(s).

The inequality 𝑍*
𝐴𝐿𝑂(s) ≤ 𝑍*

𝐴𝐿𝑅(s) can be established by applying Corollary 1 of

[2], where the weakly coupled MDP is the one defined via the transformation in

Section 2.4.3. We thus restrict our focus to the inequality 𝑍*
𝐴𝐿𝑂(s) ≥ 𝑍*

𝐴𝐿𝑅(s).

Before proceeding with the proof, let us transform problem (2.12) (the dual of the

Lagrangian relaxation problem (2.11)) for initial state s to the following equivalent

problem:

maximize
z,A

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑔𝑚𝑘𝑎𝑧
𝑚
𝑘𝑎 (A.4a)

subject to
∑︁
𝑎∈𝒜

𝑧𝑚𝑗𝑎 = 𝛼𝑚
𝑘 (s) + 𝛽 ·

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎𝑧
𝑚
𝑘𝑎, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑗 ∈ 𝒮𝑚,

(A.4b)∑︁
𝑘∈𝒮𝑚

𝑧𝑚𝑘𝑎 = 𝐴𝑎, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, (A.4c)

𝑧𝑚𝑘𝑎 ≥ 0, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜, (A.4d)

𝐴𝑎 ≥ 0, ∀ 𝑎 ∈ 𝒜, (A.4e)

where 𝐴𝑎 captures the expected discounted frequency with which action 𝑎 is taken

from 𝑡 = 1 on. It is straightforward to see that problem (A.4) and (2.12) are equiv-

alent; we have merely reformulated constraint (2.12c) in problem (2.12) through the

185

𝐴𝑎 variables. The dual of problem (A.4) is

minimize
V,𝜑

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s)𝑉 𝑚

𝑘 (A.5a)

subject to 𝑉 𝑚
𝑘 ≥ 𝑔𝑚𝑘𝑎 + 𝜑𝑚

𝑎 + 𝛽 ·
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑉
𝑚
𝑗 , ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜,

(A.5b)
𝑀∑︁

𝑚=1

𝜑𝑚
𝑎 ≥ 0, ∀ 𝑎 ∈ 𝒜. (A.5c)

Let us now return to proving that 𝑍*
𝐴𝐿𝑂(s) ≥ 𝑍*

𝐴𝐿𝑅(s). Let J be an optimal solution

of problem (2.5). Consider the following solution to problem (A.5):

𝑉 𝑚
𝑘 = 𝐽𝑚

𝑘 , ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜,

𝜑𝑚
𝑎 = min

𝑘′∈𝒮𝑚

{︃
𝐽𝑚
𝑘′ − 𝑔𝑚𝑘′𝑎 − 𝛽 ·

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘′𝑗𝑎𝐽
𝑚
𝑗

}︃

It is straightforward to see that the proposed solution (V,𝜑) attains the objective

value 𝑍*
𝐴𝐿𝑂(s) in problem (A.5); therefore, it only remains to prove that (V,𝜑) is

feasible for problem (A.5).

We will first verify constraint (A.5b). Observe that by definition of 𝜑𝑚
𝑎 , it satisfies

𝜑𝑚
𝑎 ≤ 𝐽𝑚

𝑘 − 𝑔𝑚𝑘𝑎 − 𝛽 ·
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 ,

for any 𝑚 ∈ {1, . . . ,𝑀} and 𝑘 ∈ 𝒮𝑚, which we can re-arrange to obtain

𝐽𝑚
𝑘 ≥ 𝑔𝑚𝑘𝑎 + 𝜑𝑚

𝑎 + 𝛽 ·
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 .

This last expression, by our definition of 𝑉 𝑚
𝑘 = 𝐽𝑚

𝑘 , is equivalent to

𝑉 𝑚
𝑘 ≥ 𝑔𝑚𝑘𝑎 + 𝜑𝑚

𝑎 + 𝛽 ·
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑉
𝑚
𝑗 ;

186

in other words, the proposed solution (V,𝜑) satisfies constraint (A.5b).

Next, let us verify constraint (A.5c). For a given 𝑎 ∈ 𝒜, we have that

𝑀∑︁
𝑚=1

𝜑𝑚
𝑎 =

𝑀∑︁
𝑚=1

min
𝑘′∈𝒮𝑚

{︃
𝐽𝑚
𝑘′ − 𝑔𝑚𝑘′𝑎 − 𝛽 ·

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘′𝑗𝑎𝐽
𝑚
𝑗

}︃

= min
s̄∈𝒮

{︃
𝑀∑︁

𝑚=1

(︃
𝐽𝑚
𝑠𝑚 − 𝑔𝑚𝑠𝑚𝑎 − 𝛽 ·

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗

)︃}︃

where the first step follows by definition of 𝜑; and the second step, which is the most

crucial, follows by the fact that the per-component minimizations are independent of

each other and taken over each component’s state space, allowing them to be merged

together into a single minimization over the system state space.

Now, recall that J is a feasible solution to problem (2.5) and as such, it satisfies

𝑀∑︁
𝑚=1

𝐽𝑚
𝑠𝑚 −

𝑀∑︁
𝑚=1

𝑔𝑚𝑠𝑚𝑎 − 𝛽
𝑀∑︁

𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗 ≥ 0,

for any state s̄ and the action 𝑎. Therefore, it follows that

𝑀∑︁
𝑚=1

𝜑𝑚
𝑎 = min

s̄∈𝒮

{︃
𝑀∑︁

𝑚=1

𝐽𝑚
𝑠𝑚 −

𝑀∑︁
𝑚=1

𝑔𝑚𝑠𝑚𝑎 − 𝛽 ·
𝑀∑︁

𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗

}︃
≥ 0

which establishes that (J,𝜑) satisfies constraint (A.5c). It now follows that (J,𝜑) is

feasible for problem (2.5) and thus, that 𝑍*
𝐴𝐿𝑂(s) ≥ 𝑍*

𝐴𝐿𝑅(s). Since we have estab-

lished both 𝑍*
𝐴𝐿𝑂(s) ≥ 𝑍*

𝐴𝐿𝑅(s) and 𝑍*
𝐴𝐿𝑂(s) ≤ 𝑍*

𝐴𝐿𝑅(s), it follows that 𝑍*
𝐴𝐿𝑂(s) =

𝑍*
𝐴𝐿𝑅(s), which concludes the proof. �

Proof of Part (b)

In the proof of part (a), we essentially showed that any optimal solution to prob-

lem (A.5) – the dual of problem (A.4) (which is the transformation of problem (2.12))

– can be used to construct an optimal solution to the ALO problem (2.5), and vice

versa. It only remains to show that an optimal solution of the ALR problem (2.11)

can be used to construct an optimal solution to problem (A.5); this is straightforward

187

and is omitted. �

A.1.7 Proof of Theorem 3

Proof of Part (a)

To prove (a), we will use the optimal solution of problem (2.3) with a horizon of

𝑇 to construct a solution for problem (2.12) that is feasible for problem (2.12) and

achieves an objective value of 𝑍*
𝑇 (s) in problem (2.12). It will then follow that 𝑍*

𝑇 (s) ≤

𝑍*
𝐴𝐿𝑅(s).

Let (x,A) be the optimal solution of problem (2.3) with a horizon of 𝑇 . Consider

a solution to problem (2.12) defined as follows:

𝑧𝑚𝑘𝑎 =
𝑇+1∑︁
𝑡=1

𝛽𝑡−1 · 𝑥𝑚
𝑘𝑎(𝑡).

To verify that constraint (2.12b) holds, observe that

∑︁
𝑎∈𝒜

𝑧𝑚𝑗𝑎 =
∑︁
𝑎∈𝒜

𝑇+1∑︁
𝑡=1

𝛽𝑡−1 · 𝑥𝑚
𝑗𝑎(𝑡)

=
∑︁
𝑎∈𝒜

𝑥𝑚
𝑗𝑎(1) +

𝑇∑︁
𝑡=2

𝛽𝑡−1 ·
∑︁
𝑎∈𝒜

𝑥𝑚
𝑗𝑎(𝑡) + 𝛽𝑇 ·

∑︁
𝑎∈𝒜

𝑥𝑚
𝑗𝑎(𝑇 + 1)

= 𝛼𝑚
𝑗 (s) +

𝑇∑︁
𝑡=2

𝛽𝑡−1 ·
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎𝑥
𝑚
𝑘𝑎(𝑡− 1)

+ 𝛽𝑇

(︃∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎𝑥
𝑚
𝑘𝑎(𝑇) + 𝛽

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎𝑥
𝑚
𝑘𝑎(𝑇 + 1)

)︃

= 𝛼𝑚
𝑗 (s) +

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 ·

(︃
𝑇+2∑︁
𝑡=2

𝛽𝑡−1𝑥𝑚
𝑘𝑎(𝑡− 1)

)︃

= 𝛼𝑚
𝑗 (s) + 𝛽

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 ·

(︃
𝑇+1∑︁
𝑡=1

𝛽𝑡−1𝑥𝑚
𝑘𝑎(𝑡)

)︃
= 𝛼𝑚

𝑗 (s) + 𝛽
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎 · 𝑧𝑚𝑘𝑎.

188

To verify that constraint (2.12c) holds, observe that

∑︁
𝑘∈𝒮𝑚

𝑧𝑚𝑘𝑎 =
𝑇+1∑︁
𝑡=1

∑︁
𝑘∈𝒮𝑚

𝛽𝑡−1𝑥𝑚
𝑘𝑎(𝑡) =

𝑇+1∑︁
𝑡=1

𝐴𝑎(𝑡) =
𝑇+1∑︁
𝑡=1

∑︁
𝑘∈𝒮𝑚+1

𝛽𝑡−1𝑥𝑚+1
𝑘𝑎 (𝑡) =

∑︁
𝑘∈𝒮𝑚+1

𝑧𝑚+1
𝑘𝑎 .

Finally, if we consider the objective of z in problem (2.12), we see that

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑔𝑚𝑘𝑎𝑧
𝑚
𝑘𝑎 =

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑔𝑚𝑘𝑎𝛽
𝑡−1𝑥𝑚

𝑘𝑎(𝑡) =
𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑡−1𝑔𝑚𝑘𝑎𝑥
𝑚
𝑘𝑎(𝑡),

which is exactly the objective of (x,A) in problem (2.3) with a horizon of 𝑇 , and is

equal to 𝑍*
𝑇 (s). Since z is a feasible solution for problem (2.12) and 𝑍*

𝐴𝐿𝑅(s) is the

optimal reward, it must be that 𝑍*
𝐴𝐿𝑅(s) ≥ 𝑍*

𝑇 (s), which concludes the proof of part

(a). �

Proof of Part (b)

By Theorem 2, we know that 𝑍*
𝐴𝐿𝑂(s) = 𝑍*

𝐴𝐿𝑅(s) for all s ∈ 𝒮, and by part (c)

of Theorem 3, we know that 𝑍*
𝑇 (s) ≤ 𝑍*

𝐴𝐿𝑅(s). Therefore, it follows that 𝑍*
𝑇 (s) ≤

𝑍*
𝐴𝐿𝑂(s) for every s ∈ 𝒮. �

Proof of Part (c)

Part (b) asserts that 𝑍*
𝑇 (s) ≤ 𝑍*

𝐴𝐿𝑂(s), while Proposition 7 (Corollary 1 of [2]) asserts

that 𝑍*
𝐴𝐿𝑂(s) ≤ 𝑍*

𝐶𝐿𝑅(s). Combining these two inequalities, we obtain the desired

result. �

A.1.8 Proof of Theorem 4

To show that 𝑍*
𝑇 (s) = 𝑍*

𝐴𝐿𝑅(𝑇)(s), write the dual of the ALR(𝑇) problem (2.13):

maximize
z

𝑇+1∑︁
𝑡=1

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝛽𝑡−1 · 𝑔𝑚𝑘𝑎 · 𝑧𝑚𝑘𝑎(𝑡) (A.6a)

subject to
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎𝑧
𝑚
𝑘𝑎(𝑡) =

∑︁
𝑎∈𝒜

𝑧𝑚𝑗𝑎(𝑡 + 1),

189

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑗 ∈ 𝒮𝑚, 𝑡 ∈ {1, . . . , 𝑇 − 1}, (A.6b)∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎𝑧
𝑚
𝑘𝑎(𝑇) + 𝛽

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈𝒜

𝑝𝑚𝑘𝑗𝑎𝑧
𝑚
𝑘𝑎(𝑇 + 1) =

∑︁
𝑎∈𝒜

𝑧𝑚𝑗𝑎(𝑇 + 1),

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑗 ∈ 𝒮𝑚, (A.6c)∑︁
𝑎∈𝒜

𝑧𝑚𝑘𝑎(1) = 𝛼𝑚
𝑘 (s), ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, (A.6d)

∑︁
𝑘∈𝒮𝑚

𝑧𝑚𝑘𝑎(𝑡) =
∑︁

𝑘∈𝒮𝑚+1

𝑧𝑚+1
𝑘𝑎 (𝑡),

∀ 𝑚 ∈ {1, . . . ,𝑀 − 1}, 𝑡 ∈ {1, . . . , 𝑇 + 1}, (A.6e)

𝑧𝑚𝑘𝑎(𝑡) ≥ 0, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜. (A.6f)

This problem is identical to the finite fluid problem (2.3) (the 𝑧 variables in prob-

lem (A.6) have the same meaning as the 𝑥 variables in problem (2.3)); the difference

is that constraint (A.6e) in problem (A.6) is expressed using additional variables (the

𝐴𝑎(𝑡) variables) and through a different constraint (constraint (2.3d)). Therefore, it

holds that 𝑍*
𝑇 (s) = 𝑍*

𝐴𝐿𝑅(𝑇)(s).

To show that 𝑍*
𝑇 (s) = 𝑍*

𝐴𝐿𝑂(𝑇)(s), let us take the dual of the finite fluid prob-

lem (2.3):

minimize
V,𝜑

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s)𝑉 𝑚

𝑘 (1) (A.7a)

subject to 𝐽𝑚
𝑘 (𝑡) ≥ 𝑔𝑚𝑘𝑎 + 𝜑𝑚

𝑎 (𝑡) + 𝛽
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1),

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑡 ∈ {1, . . . , 𝑇}, (A.7b)

𝐽𝑚
𝑘 (𝑇 + 1) ≥ 𝑔𝑚𝑘𝑎 + 𝜑𝑚

𝑎 (𝑇 + 1) + 𝛽
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 (𝑇 + 1),

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, (A.7c)
𝑀∑︁

𝑚=1

𝜑𝑚
𝑎 (𝑡) ≥ 0, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑡 ∈ {1, . . . , 𝑇 + 1}. (A.7d)

To show that 𝑍*
𝑇 (s) ≥ 𝑍*

𝐴𝐿𝑂(𝑇)(s), let (V,𝜑) be an optimal solution of the finite

190

fluid dual (A.7), and define a solution J for ALO(𝑇) problem (2.14) as

𝐽𝑚
𝑘 (𝑡) = 𝑉 𝑚

𝑘 (𝑡)

for each 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚 and 𝑡 ∈ {1, . . . , 𝑇 + 1}. Now observe that for any

s ∈ 𝒮 and 𝑡 ∈ {1, . . . , 𝑇}, we have

𝑀∑︁
𝑚=1

𝐽𝑚
𝑠𝑚(𝑡) =

𝑀∑︁
𝑚=1

𝑉 𝑚
𝑘 (𝑡)

≥
𝑀∑︁

𝑚=1

(︃
𝑔𝑚𝑠𝑚𝑎 + 𝜑𝑚

𝑎 (𝑡) + 𝛽
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1)

)︃

=
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚𝑎 +
𝑀∑︁

𝑚=1

𝜑𝑚
𝑎 (𝑡) + 𝛽

𝑀∑︁
𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1)

≥
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚𝑎 + 𝛽
𝑀∑︁

𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1)

where the first step follows by our construction of J; the second step, through con-

straint (A.7b) that (V,𝜑) satisfies; the third step by distributing the sum; and the

last step by constraint (A.7d). A similar argument can be used to establish that J

satisfies
𝑀∑︁

𝑚=1

𝐽𝑚
𝑠𝑚(𝑇 + 1) ≥

𝑀∑︁
𝑚=1

𝑔𝑚𝑠𝑚𝑎 + 𝛽
𝑀∑︁

𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗 (𝑇 + 1).

The solution J is therefore feasible for ALO(𝑇) problem (2.14); moreover, its objective

value is

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s)𝐽𝑚

𝑘 (1) =
𝑀∑︁

𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s)𝑉 𝑚

𝑘 (1)

= 𝑍*
𝑇 (s).

We therefore must have that 𝑍*
𝑇 (s) ≥ 𝑍*

𝐴𝐿𝑂(𝑇)(s).

To show that 𝑍*
𝑇 (s) ≤ 𝑍*

𝐴𝐿𝑂(𝑇)(s), let J be an optimal solution of the ALO(𝑇)

191

problem (2.14). Define a solution for the finite fluid dual (A.7) as follows:

𝑉 𝑚
𝑘 (𝑡) = 𝐽𝑚

𝑘 (𝑡), ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚,

𝜑𝑚
𝑎 (𝑡) = min

𝑘∈𝒮𝑚

(︃
𝐽𝑚
𝑘 (𝑇 + 1)− 𝑔𝑚𝑘𝑎 − 𝛽

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1)

)︃
,

∀𝑚 ∈ {1, . . . ,𝑀}, 𝑎 ∈ 𝒜, 𝑡 ∈ {1, . . . , 𝑇},

𝜑𝑚
𝑎 (𝑇 + 1) = min

𝑘∈𝒮𝑚

(︃
𝐽𝑚
𝑘 (𝑇 + 1)− 𝑔𝑚𝑘𝑎 − 𝛽

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 (𝑇 + 1)

)︃
,

∀𝑚 ∈ {1, . . . ,𝑀}, 𝑎 ∈ 𝒜.

Observe that by definition of 𝜑𝑚
𝑎 (𝑡) for 𝑡 < 𝑇 + 1, we have that

𝜑𝑚
𝑎 (𝑡) ≤ 𝐽𝑚

𝑘 (𝑡)− 𝑔𝑚𝑘𝑎 − 𝛽
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1),

for any 𝑚 ∈ {1, . . . ,𝑀} and 𝑘 ∈ 𝒮𝑚, which we can re-arrange to obtain

𝐽𝑚
𝑘 (𝑡) ≥ 𝑔𝑚𝑘𝑎 + 𝜑𝑚

𝑎 (𝑡) + 𝛽
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1),

or equivalently

𝑉 𝑚
𝑘 (𝑡) ≥ 𝑔𝑚𝑘𝑎 + 𝜑𝑚

𝑎 (𝑡) + 𝛽
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑉
𝑚
𝑗 (𝑡 + 1).

Similarly, for 𝑇 + 1, we have

𝜑𝑚
𝑎 (𝑇 + 1) ≤ 𝐽𝑚

𝑘 (𝑇 + 1)− 𝑔𝑚𝑘𝑎 − 𝛽
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 (𝑇 + 1),

which can be re-arranged to get

𝐽𝑚
𝑘 (𝑇 + 1) ≥ 𝑔𝑚𝑘𝑎 + 𝜑𝑚

𝑎 (𝑇 + 1) + 𝛽
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 (𝑇 + 1),

192

or equivalently

𝑉 𝑚
𝑘 (𝑇 + 1) ≥ 𝑔𝑚𝑘𝑎 + 𝜑𝑚

𝑎 (𝑇 + 1) + 𝛽
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑉
𝑚
𝑗 (𝑇 + 1);

this verifies constraints (A.7b) and (A.7c).

To verify the last constraint (A.7d), we have for any given 𝑎 ∈ 𝒜 and 𝑡 ∈ {1, . . . , 𝑇}

that

𝑀∑︁
𝑚=1

𝜑𝑚
𝑎 (𝑡) =

𝑀∑︁
𝑚=1

min
𝑘∈𝒮𝑚

{︃
𝐽𝑚
𝑘 (𝑡)− 𝑔𝑚𝑘𝑎 − 𝛽

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1)

}︃

= min
s̄∈𝒮

{︃
𝑀∑︁

𝑚=1

(︃
𝐽𝑚
𝑠𝑚(𝑡)− 𝑔𝑚𝑠𝑚𝑎 − 𝛽

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗

)︃}︃
,

where, as in the proof of part (a) of Theorem 2 (see Section A.1.6), the order of

summation and minimization can be interchanged because the minimizations are

independent of each other. Since J is feasible for problem (2.14), it must be that

𝑀∑︁
𝑚=1

𝐽𝑚
𝑠𝑚(𝑡)−

𝑀∑︁
𝑚=1

𝑔𝑚𝑠𝑚𝑎 − 𝛽
𝑀∑︁

𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1) ≥ 0,

for all s ∈ 𝒮; it therefore follows that

min
s̄∈𝒮

{︃
𝑀∑︁

𝑚=1

𝐽𝑚
𝑠𝑚(𝑡)−

𝑀∑︁
𝑚=1

𝑔𝑚𝑠𝑚𝑎 − 𝛽
𝑀∑︁

𝑚=1

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑗𝑎𝐽
𝑚
𝑗 (𝑡 + 1)

}︃
≥ 0,

which establishes that
𝑀∑︁

𝑚=1

𝜑𝑚
𝑎 (𝑡) ≥ 0.

Similar steps can be used to establish that

𝑀∑︁
𝑚=1

𝜑𝑚
𝑎 (𝑇 + 1) ≥ 0

for 𝑎 ∈ 𝒜. Thus, (V,𝜑) is a feasible solution for the finite fluid dual (A.7); it is

also easy to see that its objective value is exactly 𝑍*
𝐴𝐿𝑂(𝑇)(s). This establishes that

193

𝑍*
𝑇 (s) ≤ 𝑍*

𝐴𝐿𝑂(𝑇)(s).

Together with 𝑍*
𝑇 (s) ≥ 𝑍*

𝐴𝐿𝑂(𝑇)(s), this establishes that 𝑍*
𝑇 (s) = 𝑍*

𝐴𝐿𝑂(𝑇)(s). This

concludes the proof. �

A.1.9 Proof of Proposition 9

The proof follows by showing that 𝑍*
𝐵𝑁𝑀(s) ≤ 𝑍*

𝐴𝐿𝑅(s) and 𝑍*
𝐵𝑁𝑀(s) ≥ 𝑍*

𝐴𝐿𝑅(s). To

do this, we follow our approach in the other proofs of using one problem’s optimal

solution to construct a feasible solution for the other problem that has the same

objective value as the first problem’s optimal solution. The most difficult part of the

proof is deriving a suitable feasible solution for one problem from the optimal solution

of the other; verifying that the solutions are feasible is straightforward, but somewhat

laborious. In what follows, we will present several identities that are useful in verifying

feasibility and then provide the correct feasible solutions, but in the interest of space,

we will omit the verification of the solutions.

Let us derive a few properties of problems (2.12) and (2.15) that will be useful

to us. First of all, notice that for any z feasible for problem (2.12), for a fixed

𝑚 ∈ {1, . . . ,𝑀}, by summing constraint (2.12b) over all states 𝑗 ∈ 𝒮𝑚, we have

∑︁
𝑗∈𝒮𝑚

𝑀∑︁
𝑎′=1

𝑧𝑚𝑗𝑎′ − 𝛽
∑︁
𝑗∈𝒮𝑚

∑︁
𝑘∈𝒮𝑚

𝑀∑︁
𝑎=1

𝑝𝑚𝑘𝑗𝑎𝑧
𝑚
𝑘𝑎 =

∑︁
𝑗∈𝒮𝑚

𝛼𝑚
𝑗 (s),

which is equal to

∑︁
𝑗∈𝒮𝑚

𝑀∑︁
𝑎′=1

𝑧𝑚𝑗𝑎′ − 𝛽
∑︁
𝑘∈𝒮𝑚

𝑀∑︁
𝑎=1

(︃∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎

)︃
· 𝑧𝑚𝑘𝑎 =

∑︁
𝑗∈𝒮𝑚

𝛼𝑚
𝑗 (s).

Since
∑︀

𝑗∈𝒮𝑚 𝑝𝑚𝑘𝑗𝑎 = 1 and
∑︀

𝑗∈𝒮𝑚 𝛼𝑚
𝑗 (s) = 1, this reduces to

∑︁
𝑗∈𝒮𝑚

𝑀∑︁
𝑎′=1

𝑧𝑚𝑗𝑎′ − 𝛽
∑︁
𝑘∈𝒮𝑚

𝑀∑︁
𝑎=1

𝑧𝑚𝑘𝑎 = 1.

Observe that the two sums are identical; by dividing through by (1 − 𝛽), we obtain

194

the following identity:

∑︁
𝑘∈𝒮𝑚

𝑀∑︁
𝑎=1

𝑧𝑚𝑘𝑎 =
1

1− 𝛽
, ∀ 𝑚 ∈ {1, . . . ,𝑀}. (A.8)

Observe that by following the same steps, we can derive a similar identity for the w

variables of problem (2.15) using constraint (2.15c):

∑︁
𝑘∈𝒮𝑚

∑︁
𝑎′∈{0,1}

𝑤𝑚
𝑘𝑎′ =

1

1− 𝛽
, ∀ 𝑚 ∈ {1, . . . ,𝑀}. (A.9)

Lastly, notice that by combining constraint (2.15b) and identity (A.9) for a fixed

𝑚 ∈ {1, . . . ,𝑀}, we get that

𝑀∑︁
𝑚′=1

∑︁
𝑘∈𝒮𝑚′

𝑤𝑚′

𝑘1 =
∑︁
𝑘∈𝒮𝑚

∑︁
𝑎∈{0,1}

𝑤𝑚
𝑘𝑎.

Notice that both sums contain the sum
∑︀

𝑘∈𝒮𝑚 𝑤𝑚
𝑘1; by subtracting it out, we obtain

the following identity:

∑︁
𝑚′ ̸=𝑚

∑︁
𝑘∈𝒮𝑚′

𝑤𝑚′

𝑘1 =
∑︁
𝑘∈𝒮𝑚

𝑤𝑚
𝑘0, ∀ 𝑚 ∈ {1, . . . ,𝑀}. (A.10)

Having defined these identities, we are ready to move on with the proof.

To prove that 𝑍*
𝐴𝐿𝑅(s) ≥ 𝑍*

𝐵𝑁𝑀(s), suppose that w is an optimal solution to

problem (2.15). We will proceed in two different cases.

Case 1 of 𝑍*
𝐴𝐿𝑅(s) ≥ 𝑍*

𝐵𝑁𝑀(s). Suppose that
∑︀

𝑗∈𝒮𝑚 𝑤𝑚
𝑗0 > 0 for every 𝑚 ∈

{1, . . . ,𝑀}. Define a solution to problem (2.12) as

𝑧𝑚𝑘𝑚 = 𝑤𝑚
𝑘1, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚,

𝑧𝑚𝑘𝑎 =
𝑤𝑚

𝑘0∑︀
𝑗∈𝒮𝑚 𝑤𝑚

𝑗0

·
∑︁
𝑗∈𝒮𝑎

𝑤𝑎
𝑗1 ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑎 ̸= 𝑚, 𝑘 ∈ 𝒮𝑚.

It can be shown that z is feasible for problem (2.12) and that its objective in prob-

195

lem (2.12) is exactly 𝑍*
𝐵𝑁𝑀(s).

Case 2 of 𝑍*
𝐴𝐿𝑅(s) ≥ 𝑍*

𝐵𝑁𝑀(s). In the second case, we suppose that there exists an

𝑚̃ such that
∑︀

𝑗∈𝒮𝑚 𝑤𝑚̃
𝑗0 = 0. In this case, the expected discounted frequency with

which we do not active bandit 𝑚̃ when it is in any of its states is zero; intuitively,

this means that we are always activating bandit 𝑚̃.

Armed with this intuition and the above identity, let us define a solution z for

problem (2.12) as

𝑧𝑚𝑘𝑎 = 0, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ̸= 𝑚̃,

𝑧𝑚𝑘𝑚̃ = 𝑤𝑚
𝑘0, ∀ 𝑚 ̸= 𝑚̃, 𝑘 ∈ 𝒮𝑚̃,

𝑧𝑚̃𝑘𝑚̃ = 𝑤𝑚̃
𝑘1, ∀𝑘 ∈ 𝒮𝑚̃.

As in Case 1, it can then be shown that z is feasible for problem (2.12) and that its

objective in problem (2.12) is exactly 𝑍*
𝐵𝑁𝑀(s).

This proves that 𝑍*
𝐵𝑁𝑀(s) ≤ 𝑍*

𝐴𝐿𝑅(s); we now turn our attention to 𝑍*
𝐵𝑁𝑀(s) ≥

𝑍*
𝐴𝐿𝑅(s). To prove this inequality, suppose that we have a solution z to problem (2.12).

Define the solution w to problem (2.15) as

𝑤𝑚
𝑘0 =

∑︁
𝑎̸=𝑚

𝑧𝑚𝑘𝑎, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚,

𝑤𝑚
𝑘1 = 𝑧𝑚𝑘𝑚, ∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚.

It can be shown that w is feasible for problem (2.15) and that its objective in prob-

lem (2.15) is exactly 𝑍*
𝐴𝐿𝑅(s).

From here, since 𝑍*
𝐴𝐿𝑅(s) ≤ 𝑍*

𝐵𝑁𝑀(s) and 𝑍*
𝐴𝐿𝑅(s) ≥ 𝑍*

𝐵𝑁𝑀(s), it follows that

𝑍*
𝐴𝐿𝑅(s) = 𝑍*

𝐵𝑁𝑀(s), as required. �

196

A.2 Counterexample to show that 𝑍*(s) ≤ 𝐽*(s) does

not always hold

To develop the counterexample, we proceed in two steps. First, we develop a useful

bound that relates the optimal value of a truncated fluid formulation and the infinite

fluid formulation (problem (2.2)). Then, we describe a specific problem instance

where the numerical values of the optimal DP value function and the optimal value

of the finite fluid formulation, together with the bound we just developed, allow us

to conclude that 𝑍*(s) ≤ 𝐽*(s) does not hold.

A.2.1 Bound

Clearly, we are not able to solve the optimization problem (2.2), since it is a problem

with a countably infinite number of constraints and variables. However, if we only in-

clude the decision variables and constraints corresponding to 𝑡 = 1 to 𝑡 = 𝑇 , and trun-

cate the objective function to the finite sum
∑︀𝑇

𝑡=1

∑︀𝑀
𝑚=1

∑︀𝑛
𝑘=1

∑︀𝑀
𝑎=1 𝛽

𝑡−1𝑔𝑚𝑘𝑎𝑥
𝑚
𝑘𝑎(𝑡), we

obtain a finite formulation that we are able to solve. (This is in fact problem (2.3)

without the 𝑇 + 1 objective term that accounts for the system’s evolution from

𝑡 = 𝑇 + 1 on.) Let 𝑍*
𝑇,trunc(s) be the optimal value of this truncated problem. The

finite-length optimal solution (x,A) that attains this objective value can be easily

extended for times 𝑡 > 𝑇 (e.g., by setting 𝐴1(𝑡) = 1 for 𝑡 > 𝑇 , 𝑥𝑚
𝑘𝑎(𝑡) and 𝐴𝑎(𝑡) are

uniquely determined for 𝑡 > 𝑇) to yield a completed, infinite-length solution. Using

this infinite-length solution, we see that

𝑍*
𝑇,trunc(s) =

𝑇∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑛∑︁
𝑘=1

𝑀∑︁
𝑎=1

𝛽𝑡−1𝑔𝑚𝑘𝑎𝑥
𝑚
𝑘𝑎(𝑡) ≤

∞∑︁
𝑡=1

𝑀∑︁
𝑚=1

𝑛∑︁
𝑘=1

𝑀∑︁
𝑎=1

𝛽𝑡−1𝑔𝑚𝑘𝑎𝑥
𝑚
𝑘𝑎(𝑡) ≤ 𝑍*(s),

where the first step follows by the definition of 𝑍*
𝑇 (s) as the optimal value of the

truncated formulation, the second by the fact that the value of the sum can only

increase when it is extended from a finite one to an infinite one (all 𝑔𝑚𝑘𝑎 and 𝑥𝑚
𝑘𝑎(𝑡)

values are nonnegative), and the third by the fact that the completed, infinite-length

197

solution is a feasible solution to the infinite fluid formulation (2.2).

A.2.2 Instance

Consider a decomposable MDP with 𝑀 = 3, 𝒮1 = 𝒮2 = 𝒮3 = {1, 2, 3}, with the

following reward data:

g1
1 =

⎡⎢⎢⎢⎣
3.3323

0.2765

2.2476

⎤⎥⎥⎥⎦ , g2
2 =

⎡⎢⎢⎢⎣
2.6230

8.9540

4.5576

⎤⎥⎥⎥⎦ ,g3
3 =

⎡⎢⎢⎢⎣
2.8975

7.8568

0.8381

⎤⎥⎥⎥⎦ , (A.11)

g𝑚
𝑎 = 0, ∀𝑚 ∈ {1, 2, 3}, 𝑎 ∈ {1, 2, 3}, 𝑎 ̸= 𝑚, (A.12)

and the following probability transition data:

p1
1 =

⎡⎢⎢⎢⎣
0.0540 0.3790 0.5670

0.0190 0.0390 0.9420

0.3120 0.5330 0.1550

⎤⎥⎥⎥⎦ , (A.13)

p2
1 =

⎡⎢⎢⎢⎣
0.8560 0 0.1440

0.1590 0.3150 0.5260

0.0320 0.8050 0.1630

⎤⎥⎥⎥⎦ , (A.14)

p3
1 =

⎡⎢⎢⎢⎣
0.0740 0.9020 0.0240

0.3440 0.0200 0.6360

0.5820 0.3750 0.0430

⎤⎥⎥⎥⎦ (A.15)

p𝑚
𝑎 = I, ∀𝑚 ∈ {1, 2, 3}, 𝑎 ∈ {1, 2, 3}, 𝑎 ̸= 𝑚. (A.16)

As we will see in Section 2.5, this problem actually corresponds to a regular multi-

armed bandit problem with three arms.

Suppose that the discount factor is 0.9 and the initial state s is set to (3, 3, 1).

Solving the truncated version of problem (2.2) with 𝑇 = 100 for initial state s, we

obtain an objective value of 𝑍*
𝑇,trunc(s) = 57.7134, while the optimal DP value function

198

is 𝐽*(s) = 57.3812. By the bound above, we have

𝐽*(s) = 57.3812 < 57.7134 = 𝑍*
𝑇,trunc(s) ≤ 𝑍*(s),

i.e., that 𝐽*(s) < 𝑍*(s). This allows us to conclude that 𝐽*(s) ≥ 𝑍*(s) does not

always hold.

A.3 Derivation of alternate Lagrangian relaxation

In this section, we derive the ALR formulation. The steps that we follow here are

essentially the same as those used in [2] to derive the Lagrangian relaxation formu-

lation, applied to the specific weakly-coupled MDP that is at the heart of the ALR.

For completeness, we show the main steps of the derivation here.

The optimal value function for the true MDP of interest satisfies the following

Bellman equation:

𝐽*(s) = max
(𝑎1,...,𝑎𝑀)∈𝒜×···×𝒜:

I{𝑎𝑚=𝑎}−I{𝑎𝑚+1=𝑎}=0,
∀𝑚∈{1,...,𝑀−1}, 𝑎∈𝒜

(︃
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚𝑎𝑚 + 𝛽 ·
∑︁
s̄∈𝒮

(︃
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎𝑚

)︃
𝐽*(s̄)

)︃
. (A.17)

In the Lagrangian relaxation approach [58, 2], we dualize the action consistency con-

straint on the action vectors (𝑎1, . . . , 𝑎𝑀). For each constraint in the maximization,

we introduce a Lagrange multiplier 𝜆𝑚
𝑎 ∈ R, and penalize the violation of the corre-

sponding (𝑚, 𝑎) constraint in the Bellman iteration. We obtain a new value function

199

𝐽𝜆(s) which satisfies the following modified Bellman equation:

𝐽𝜆(s) = max
(𝑎1,...,𝑎𝑀)∈𝒜×···×𝒜

(︃
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚𝑎𝑚 + 𝛽 ·
∑︁
s̄∈𝒮

(︃
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎𝑚

)︃
𝐽𝜆(s̄)

−
𝑀−1∑︁
𝑚=1

∑︁
𝑎∈𝒜

𝜆𝑚
𝑎 (I{𝑎𝑚 = 𝑎} − I{𝑎𝑚+1 = 𝑎})

)︃
(A.18)

= max
(𝑎1,...,𝑎𝑀)∈𝒜×···×𝒜

(︃
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚𝑎𝑚 + 𝛽 ·
∑︁
s̄∈𝒮

(︃
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎𝑚

)︃
𝐽𝜆(s̄)

−
𝑀−1∑︁
𝑚=1

(𝜆𝑚
𝑎𝑚 − 𝜆𝑚

𝑎𝑚+1)

)︃
(A.19)

We will show that the solution to the above Bellman equation is of the form

𝐽𝜆(s) =
𝑀∑︁

𝑚=1

𝑉 𝑚,𝜆(𝑠𝑚), (A.20)

where each 𝑉 𝑚,𝜆 is a component-wise value function satisfying

𝑉 𝑚,𝜆(𝑠𝑚) = max
𝑎∈𝒜

(︃
𝑔𝑚𝑠𝑚𝑎 + 𝛽

∑︁
𝑠𝑚∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑠𝑚𝑎𝑚𝑉
𝑚,𝜆(𝑠𝑚)− I{𝑚 < 𝑀} · 𝜆𝑚

𝑎 + I{𝑚 > 1} · 𝜆𝑚−1
𝑎

)︃
(A.21)

To see this, we will show that the above form satisfies equation (A.20). We have

max
(𝑎1,...,𝑎𝑀)∈𝒜×···×𝒜

(︃
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚𝑎𝑚 + 𝛽 ·
∑︁
s̄∈𝒮

(︃
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎𝑚

)︃(︃
𝑀∑︁

𝑚=1

𝑉 𝑚,𝜆(𝑠𝑚)

)︃
−

𝑀−1∑︁
𝑚=1

(𝜆𝑚
𝑎𝑚 − 𝜆𝑚

𝑎𝑚+1)

)︃

= max
(𝑎1,...,𝑎𝑀)∈𝒜×···×𝒜

(︃
𝑀∑︁

𝑚=1

𝑔𝑚𝑠𝑚𝑎𝑚 + 𝛽 ·
𝑀∑︁

𝑚=1

∑︁
𝑠𝑚∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑠𝑚𝑎𝑚𝑉
𝑚,𝜆(𝑠𝑚)−

𝑀−1∑︁
𝑚=1

(𝜆𝑚
𝑎𝑚 − 𝜆𝑚

𝑎𝑚+1)

)︃

=
𝑀∑︁

𝑚=1

max
𝑎𝑚∈𝒜

(︃
𝑔𝑚𝑠𝑚𝑎𝑚 + 𝛽

∑︁
𝑠𝑚∈𝒮𝑚

𝑝𝑚𝑠𝑚𝑠𝑚𝑎𝑚𝑉
𝑚,𝜆(𝑠𝑚)− I{𝑚 < 𝑀} · 𝜆𝑚

𝑎 + I{𝑚 > 1} · 𝜆𝑚−1
𝑎

)︃

=
𝑀∑︁

𝑚=1

𝑉 𝑚,𝜆(𝑠𝑚),

200

where the first equality follows by the linearity of expectation (the expression

∑︁
s̄∈𝒮

(︃
𝑀∏︁

𝑚=1

𝑝𝑚𝑠𝑚𝑠𝑚𝑎𝑚

)︃(︃
𝑀∑︁

𝑚=1

𝑉 𝑚,𝜆(𝑠𝑚)

)︃

can be viewed as the expectation of a sum of random variables that correspond to

each component’s value function at a random next state); the second by the fact that

the maximizations over each of the 𝑎𝑚 variables are independent of each other; and

the third by definition of the 𝑉 𝑚,𝜆
𝑘 ’s.

To now derive the ALR formulation, let s be the initial state. The value of s is

𝐽𝜆(s) =
∑︀𝑀

𝑚=1 𝑉
𝑚,𝜆(𝑠𝑚). Each component value function 𝑉 𝑚,𝜆, described by the

Bellman equation in equation (A.21), can be evaluated at 𝑠𝑚 by solving the following

linear optimization problem, where 𝜆 is fixed (i.e., not a decision variable):

𝑉 𝑚,𝜆(𝑠𝑚) = minimize
V𝑚

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s)𝑉 𝑚

𝑘 (A.22a)

subject to 𝑉 𝑚
𝑘 ≥ 𝑔𝑚𝑘𝑎 − I{𝑚 < 𝑀} · 𝜆𝑚

𝑎 + I{𝑚 > 1} · 𝜆𝑚−1
𝑎

+ 𝛽 ·
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑉
𝑚
𝑗 , (A.22b)

∀ 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜. (A.22c)

The value 𝐽𝜆(s) can then be expressed as the optimal value of the following optimiza-

tion problem, which combines the above component-wise optimization problems into

one problem:

𝐽𝜆(s) = minimize
V

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s)𝑉 𝑚

𝑘 (A.23a)

subject to 𝑉 𝑚
𝑘 ≥ 𝑔𝑚𝑘𝑎 − I{𝑚 < 𝑀} · 𝜆𝑚

𝑎 + I{𝑚 > 1} · 𝜆𝑚−1
𝑎

+ 𝛽 ·
∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑉
𝑚
𝑗 , (A.23b)

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜. (A.23c)

As in [2], it can be shown that the optimal value of the above problem, which is equal

201

to 𝐽𝜆(s), is an upper bound on 𝐽*(s). We now seek to find the tightest such upper

bound, that is, min𝜆 𝐽
𝜆(s). This can be accomplished by optimizing over 𝜆 as an

additional decision variable in the above optimization problem:

minimize
V,𝜆

𝑀∑︁
𝑚=1

∑︁
𝑘∈𝒮𝑚

𝛼𝑚
𝑘 (s)𝑉 𝑚

𝑘 (A.24a)

subject to 𝑉 𝑚
𝑘 ≥ 𝑔𝑚𝑘𝑎 − I{𝑚 < 𝑀} · 𝜆𝑚

𝑎 + I{𝑚 > 1} · 𝜆𝑚−1
𝑎 + 𝛽 ·

∑︁
𝑗∈𝒮𝑚

𝑝𝑚𝑘𝑗𝑎𝑉
𝑚
𝑗 ,

∀ 𝑚 ∈ {1, . . . ,𝑀}, 𝑘 ∈ 𝒮𝑚, 𝑎 ∈ 𝒜. (A.24b)

The above formulation is exactly the ALR formulation (2.11).

202

Bibliography

[1] D. Adelman. Dynamic bid prices in revenue management. Operations Research,
55(4):647–661, 2007.

[2] D. Adelman and A. J. Mersereau. Relaxations of weakly coupled stochastic
dynamic programs. Operations Research, 56(3):712–727, 2008.

[3] H. Akaike. A new look at the statistical model identification. IEEE Transactions
on Automatic Control, 19(6):716–723, 1974.

[4] G. M. Allenby and P. E. Rossi. Marketing models of consumer heterogeneity.
Journal of Econometrics, 89(1):57–78, 1998.

[5] E. J. Anderson and P. Nash. Linear Programming in Infinite-Dimensional Spaces.
John Wiley & Sons, Chichester, UK, 1987.

[6] O. Baron, J. Milner, and H. Naseraldin. Facility location: A robust optimization
approach. Production and Operations Management, 20(5):772–785, 2011.

[7] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ,
USA, 1957.

[8] R. Bellman. Adaptive control processes: a guided tour, volume 4. Princeton
university press Princeton, 1961.

[9] A. Belloni, R. Freund, M. Selove, and D. Simester. Optimizing product line
designs: Efficient methods and comparisons. Management Science, 54(9):1544–
1552, 2008.

[10] M. E. Ben-Akiva and S. R. Lerman. Discrete choice analysis: theory and appli-
cation to travel demand, volume 9. MIT press, 1985.

[11] F. Bernstein, A. G. Kök, and L. Xie. Dynamic assortment customization
with limited inventories. Manufacturing & Service Operations Management,
17(4):538–553, 2015.

[12] D. P. Bertsekas. Dynamic programming and optimal control, volume 1. Athena
Scientific, 1995.

[13] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, 1996.

203

[14] D. Bertsimas. The achievable region method in the optimal control of queueing
systems; formulations, bounds and policies. Queueing Systems: Theory and
Applications, 21(3-4):337–389, 1995.

[15] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of
robust optimization. SIAM Review, 53(3):464–501, 2011.

[16] D. Bertsimas and N. Kallus. From predictive to prescriptive analytics. arXiv
preprint arXiv:1402.5481, 2015.

[17] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng. Adaptive ro-
bust optimization for the security constrained unit commitment problem. IEEE
Transactions on Power Systems, 28(1):52–63, 2013.

[18] D. Bertsimas and J. Niño-Mora. Conservation laws, extended polymatroids and
multiarmed bandit problems; a polyhedral approach to indexable systems. Math-
ematics of Operations Research, 21(2):257–306, 1996.

[19] D. Bertsimas and J. Niño-Mora. Restless bandits, linear programming relax-
ations, and a primal-dual index heuristic. Operations Research, 48(1):80–90,
2000.

[20] D. Bertsimas, J. Silberholz, and T. Trikalinos. Decision-making under compet-
ing interpretations of the evidence: Application in prostate cancer screening.
Submitted for publication, 2015.

[21] D. Bertsimas and M. Sim. The price of robustness. Operations Research,
52(1):35–53, 2004.

[22] D. Bertsimas and A. Thiele. A robust optimization approach to inventory theory.
Operations Research, 54(1):150–168, 2006.

[23] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, volume 6.
Athena Scientific, Belmont, MA, 1997.

[24] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast dynamic
language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

[25] J. Blanchet, G. Gallego, and V. Goyal. A Markov chain approximation to choice
modeling. Submitted, 2013. Available at http://www.columbia.edu/~vg2277/
MC_paper.pdf.

[26] T. Bortfeld, T. C. Y. Chan, A. Trofimov, and J. N. Tsitsiklis. Robust manage-
ment of motion uncertainty in intensity-modulated radiation therapy. Operations
Research, 56(6):1461–1473, 2008.

[27] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends R○.

204

[28] H. Bozdogan. Model selection and akaike’s information criterion (aic): The
general theory and its analytical extensions. Psychometrika, 52(3):345–370, 1987.

[29] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and
regression trees. CRC press, 1984.

[30] J. J. M. Bront, I. Méndez-Díaz, and G. Vulcano. A column generation algorithm
for choice-based network revenue management. Operations Research, 57(3):769–
784, 2009.

[31] Celect, Inc., 2014. Accessed February 11, 2015; available at http://www.celect.
net.

[32] T. C. Y. Chan, Z.-J. M. Shen, and A. Siddiq. Robust facility location under
demand location uncertainty. arXiv preprint arXiv:1507.04397, 2015.

[33] K. D. Chen and W. H. Hausman. Technical note: Mathematical properties of
the optimal product line selection problem using choice-based conjoint analysis.
Management Science, 46(2):327–332, 2000.

[34] X. Chen, Z. Owen, C. Pixton, and D. Simchi-Levi. A statistical learning approach
to personalization in revenue management. Available at SSRN 2579462, 2015.

[35] E. G. Coffman and I. Mitrani. A characterization of waiting time performance
realizable by single-server queues. Operations Research, 28(3):810–821, 1980.

[36] J. Davis, G. Gallego, and H. Topaloglu. Assortment planning under the
multinomial logit model with totally unimodular constraint structures. Tech-
nical report, Department of IEOR, Columbia University. Available at http:
//www.columbia.edu/~gmg2/logit_const.pdf, 2013.

[37] J. M. Davis, G. Gallego, and H. Topaloglu. Assortment optimization under
variants of the nested logit model. Operations Research, 62(2):250–273, 2014.

[38] D. P. de Farias and B. Van Roy. The linear programming approach to approxi-
mate dynamic programming. Operations Research, 51(6):850–865, 2003.

[39] D. P. de Farias and B. Van Roy. On constraint sampling in the linear program-
ming approach to approximate dynamic programming. Mathematics of Opera-
tions Research, 29(3):462–478, 2004.

[40] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society
Series B, pages 1–38, 1977.

[41] A. Désir and V. Goyal. Near-optimal algorithms for capacity constrained assort-
ment optimization. Available at SSRN 2543309, 2014.

[42] G. Dobson and S. Kalish. Positioning and pricing a product line. Marketing
Science, 7(2):107–125, 1988.

205

[43] G. Dobson and S. Kalish. Heuristics for pricing and positioning a product-line
using conjoint and cost data. Management Science, 39(2):160–175, 1993.

[44] V. F. Farias, S. Jagabathula, and D. Shah. A nonparametric approach to mod-
eling choice with limited data. Management Science, 59(2):305–322, 2013.

[45] A. Federgruen and H. Groenevelt. Characterization and optimization of achiev-
able performance in general queueing systems. Operations Research, 36(5):733–
741, 1988.

[46] J. B. Feldman and H. Topaloglu. Revenue Management Under the Markov
Chain Choice Model. Working paper, 2014. Available at http://people.orie.
cornell.edu/huseyin/publications/mc_revenue.pdf.

[47] J. B. Feldman and H. Topaloglu. Capacity constraints across nests in as-
sortment optimization under the nested logit model. Operations Research,
forthcoming, 2015. Available at http://legacy.orie.cornell.edu/huseyin/
publications/nested_capacitated_full.pdf.

[48] M. Fisher and R. Vaidyanathan. Which Products Should You Stock? A new
approach to assortment planning turns an art into a science. Harvard Business
Review, pages 108–118, 2012.

[49] G. Gallego and H. Topaloglu. Constrained assortment optimization for the nested
logit model. Management Science, 60(10):2583–2601, 2014.

[50] A. Ghate and R. L. Smith. A linear programming approach to nonstationary
infinite-horizon markov decision processes. Operations Research, 61(2):413–425,
2013.

[51] D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Mathematics
of Operations Research, 28(1):1–38, 2003.

[52] D. Goldfarb and S. Ma. Fast multiple-splitting algorithms for convex optimiza-
tion. SIAM Journal on Optimization, 22(2):533–556, 2012.

[53] N. Golrezaei, H. Nazerzadeh, and P. Rusmevichientong. Real-time optimization
of personalized assortments. Management Science, 60(6):1532–1551, 2014.

[54] P. E. Green and A. M. Krieger. Models and heuristics for product line selection.
Marketing Science, 4(1):1–19, 1985.

[55] P. E. Green and A. M. Krieger. Conjoint analysis with product-positioning
applications. In J. Eliashberg and G. L. Lilien, editors, Handbooks in Operations
Research and Management Science, volume 5, pages 467–515. Elsevier, 1993.

[56] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, 2015.

[57] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning.
Springer, 2009.

206

[58] J. T. Hawkins. A Lagrangian decomposition approach to weakly coupled dynamic
optimization problems and its applications. PhD thesis, Massachusetts Institute
of Technology, 2003.

[59] D. P. Heyman and M. J. Sobel. Stochastic models in operations research. Vol. 2,
Stochastic optimization. McGraw-Hill New York, 1984.

[60] R. A. Howard. Dynamic Probabilistic Systems, Volume II: Semi-Markov and
Decision Processes. 1971.

[61] IBM. IBM – DemandTec Assortment Optimization, 2015. Accessed Febru-
ary 11, 2015; available at http://www-03.ibm.com/software/products/en/
assortment-optimization.

[62] S. Jagabathula. Assortment optimization under general choice. Available at
SSRN, 2014.

[63] S. Jasin and S. Kumar. A re-solving heuristic with bounded revenue loss for
network revenue management with customer choice. Mathematics of Operations
Research, 37(2):313–345, 2012.

[64] JDA Software Group, Inc. JDA Assortment Optimization | JDA Software, 2015.
Accessed February 11, 2015; available at http://www.jda.com/solutions/
assortment-optimization/.

[65] R. Kohli and R. Sukumar. Heuristics for product-line design using conjoint
analysis. Management Science, 36(12):1464–1478, 1990.

[66] A. G. Kök, M. L. Fisher, and R. Vaidyanathan. Assortment planning: Review
of literature and industry practice. In Narendra Agrawal and Stephen A. Smith,
editors, Retail Supply Chain Management, volume 122 of International Series in
Operations Research & Management Science, pages 99–153. Springer US, 2009.

[67] U. G. Kraus and C. A. Yano. Product line selection and pricing under a share-of-
surplus choice model. European Journal of Operational Research, 150(3):653–671,
2003.

[68] I. Lee, M. A. Epelman, H. E. Romeijn, and R. L. Smith. A linear program-
ming approach to constrained nonstationary infinite-horizon markov decision
processes. Technical Report 13-01, Ann Arbor, MI: University of Michigan,
Dept. of Industrial & Operations Engineering, 2013.

[69] G. Li, P. Rusmevichientong, and H. Topaloglu. The d-level nested
logit model: Assortment and price optimization problems. Technical
report, Cornell University, School of Operations Research and Informa-
tion Engineering. Available at http://legacy.orie.cornell.edu/~huseyin/
publications/publications.html, 2013.

207

[70] M. Lubin and I. Dunning. Computing in Operations Research Using Julia. IN-
FORMS Journal on Computing, 27(2):238–248, 2015.

[71] R. D. McBride and F. S. Zufryden. An integer programming approach to the
optimal product line selection problem. Marketing Science, 7(2):126–140, 1988.

[72] Oracle Corporation. Oracle Retail – World Class Commerce Solutions | Or-
acle, 2015. Accessed June 1, 2015; available at https://www.oracle.com/
industries/retail/index.html.

[73] J. Osterman, W. Weaver, J. Slater, and P. Glass. Failure-proof method for
intrinsic field subtraction. Manhattan Journal of Physics, 1(4):7–10, 1959.

[74] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Di-
mensionality. Wiley-Interscience, 2007.

[75] M. L. Puterman. Markov decision processes: Discrete dynamic stochastic pro-
gramming. John Wiley Chichester, 1994.

[76] H. E. Romeijn, R. L. Smith, and J. C. Bean. Duality in infinite dimensional
linear programming. Mathematical Programming, 53(1-3):79–97, 1992.

[77] P. E. Rossi. bayesm: Bayesian Inference for Marketing/Micro-econometrics,
2012. R package version 2.2-5.

[78] P. E. Rossi and G. M. Allenby. Bayesian statistics and marketing. Marketing
Science, 22(3):304–328, 2003.

[79] P. E. Rossi, G. M. Allenby, and R. McCulloch. Bayesian statistics and marketing.
John Wiley & Sons, 2012.

[80] P. Rusmevichientong, Z.-J. M. Shen, and D. B. Shmoys. Dynamic assortment
optimization with a multinomial logit choice model and capacity constraint. Op-
erations Research, 58(6):1666–1680, 2010.

[81] P. Rusmevichientong, D. Shmoys, C. Tong, and H. Topaloglu. Assortment op-
timization under the multinomial logit model with random choice parameters.
Production and Operations Management, 23(11):2023–2039, 2014.

[82] P. Rusmevichientong and H. Topaloglu. Robust assortment optimization in rev-
enue management under the multinomial logit choice model. Operations Re-
search, 60(4):865–882, 2012.

[83] D. Russo and B. Van Roy. Learning to optimize via posterior sampling. Mathe-
matics of Operations Research, 39(4):1221–1243, 2014.

[84] Sawtooth Software. Advanced simulation module (asm) for product optimization
v1.5. Sawtooth Software Technical Paper Series, 2003.

208

[85] C. Schön. On the optimal product line selection problem with price discrimina-
tion. Management Science, 56(5):896–902, 2010.

[86] C. Schön. On the product line selection problem under attraction choice models
of consumer behavior. European Journal of Operational Research, 206(1):260–
264, 2010.

[87] G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461–
464, 1978.

[88] J. G. Shanthikumar and D. D. Yao. Multiclass queueing systems: Polymatroidal
structure and optimal scheduling control. Operations Research, 40(3):S293–S299,
1992.

[89] K. Talluri and G. van Ryzin. Revenue management under a general discrete
choice model of consumer behavior. Management Science, 50(1):15–33, 2004.

[90] R. H. Thaler and C. R. Sunstein. Nudge. Yale University Press, 2008.

[91] O. Toubia, D. I. Simester, J. R. Hauser, and E. Dahan. Fast polyhedral adaptive
conjoint estimation. Marketing Science, 22(3):273–303, 2003.

[92] K. E. Train. Em algorithms for nonparametric estimation of mixing distributions.
Journal of Choice Modelling, 1(1):40–69, 2008.

[93] K. E. Train. Discrete choice methods with simulation. Cambridge university
press, 2009.

[94] B. Van Roy. Neuro-dynamic programming: Overview and recent trends. In
Handbook of Markov Decision Processes, pages 431–459. Springer, 2002.

[95] G. van Ryzin and G. Vulcano. A market discovery algorithm to estimate a general
class of nonparametric choice models. Management Science, 61(2):281–300, 2015.

[96] A. Wächter and L. T. Biegler. On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming. Mathematical
programming, 106(1):25–57, 2006.

[97] A. Zeileis, T. Hothorn, and K. Hornik. Model-based recursive partitioning. Jour-
nal of Computational and Graphical Statistics, 17(2):492–514, 2008.

[98] F. S. Zufryden. Product line optimization by integer programming. In Proc.
Annual Meeting of ORSA/TIMS, San Diego, CA, pages 100–114, 1982.

209

